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Graph ML for Computational Biology

= There has been a surge of interest in leveraging GNNs for
learning meaningful representations of biology

= GNNs have been used to learn representations that
enabled critical predictions in downstream applications
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Biology Is Interconnected!
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. The effects of drugs are not limited to the
o Noncoding RNA . . . .
£ \ molecules to which they directly bind in the
@]
O body. Instead, these effects spread throughout

— biological networks in which they act.
Therefore, the effect of a drug on a disease is
inherently a network phenomenon
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Why Networks in Biology?

Network of protein-protein interactions in human cells.
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Why Networks in Biology?

Network of protein-protein interactions in human cells.
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Why Networks in Biology?
@

Long-standing Paradigm: “Local Hypothesis”

Proteins involved in the same disease have an increased tendency
to interact with each other

MKS1

Corollary of the Local Hypothesis

Mutations in interacting proteins often lead to similar diseases

Network medicine: a network-based approach to human disease, Nature Reviews Genetics, 2011

‘ Known disease proteins

Predicted disease proteins
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Similar findings app\y to a broad

range ot biological networks

Cellular components associated with a specific disease
(phenotype) show a tendency to cluster in the same
network neighborhood

GNNs are well-suited for
the analysis of biological networks
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Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear)
Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities, Information Fusion 20319
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Why are Biological Networks
Challenging?

1. Networks involve heterogeneous interactions that span
fromm molecules to whole populations
= The challenge is how to computationally operationalize these
data and make them amenable to ML
2. Networks contain data from diverse sources, including
experimental readouts, curated annotations, metadata

= No single data type can capture all the factors necessary to
understand a phenomenon such as a disease

3. Networks are noisy due to inherent natural variations
and limitations of measurement platforms

= Missing data, repeated measurements, and contradictory
observations can plague the analysis

Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear) 5
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=_Safe drugs and drug combinations
@ Methods: Multi-relational link prediction on KGs

= Patient outcomes & disease classification
Methods: Subgraph embeddings

= ffective disease treatments
Methods: Few-shot learning for graphs
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Poly-Therapy

Patients take multiple drugs to treat
complex or co-existing diseases

(0
46 A) of people over 65 years take more than 5 drugs
Many take more than 20 drugs to treat heart diseases, depression or cancer
15% - -
O of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed $1 77 billion in the U.S. alone

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Unexpected Drug Interactions

Co-prescribed drugs Side Effects

A
Task: How likely will a particular
combination of drugs lead to a

particular side effect?
ry: §? @ S

3% 2%
Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

prob. prob.



Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 1

Why is modehng drug
combinations chalenging?

Combinatorial explosion P fi N

= >13 million possible combinations of 2 drugs '; :

= >20 billion possible combinations of 3 drugs 4 4
Non-linear & non-additive interactions 9. 0--99

= Different effect than the additive effect of individual drugs

't

Small subsets of patients 'ﬁ‘”’

= Side effects are interdependent :ﬁ‘

= No info on drug combinations not yet used in patients *‘i

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Polypharmacy Knowledge Graph

E.g., Specific type of drug-
drug interaction (ry)

r; Edgetypei
O A Node types

ﬁ E.g., drug-target interaction (ry)

E.g., protein-protein interaction (rx)

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Approach: Decagon

1. Encoder: Take a multimodal | Embedding
network and learn an embedding A MRS
for every node © =) EEEEE

2. Decoder: Use the learned EEEESE VAN

' ' ?
embeddings to predict labeled . ) 5
edges between nodes EEEEE A

Training the model: Feed embeddings into any loss function and run stochastic
gradient descent to train weight parameters:

Use a loss based on e.g., random walks, node proximity in the graph
Directly train the model for a supervised task (e.g., node classification)

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

14
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Key ldea: Aggregate Neighbors

Generate embeddings based on local network
neighborhoods separated by edge type

1) Determine a node’s computation
graph for each edge type

2) Learn how to transform and propagate
information across computation graph

Example for edge type r3: =
= A
=

1st order
neighbor of v

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 .




Multirelational Graph Encoder

Key element: Each node’s computation graph
defines a neural network with a different architecture

= |nitial O-th layer embeddings are equal to node features:

/¥
h(o ) Aggregate neighbor’s Ability to integrate side
v — X previous-layer embeddings, information about nodes
separated by edge type
= Per-layer update of embeddings: Previous-layer
embedding of v
L
h{*) = ¢ ( > > W Hh{Y ¢ c;‘zhg’“>> k=1,...,K
T u€NT
= Embeddings after K layers of neighborhoo egation:
. h( K) Normalization constant, fixed
Z, = 11, Wq(ak) Par e.g., 1/|NJ|, or learned

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Edge Decoder

new discovered relationships

Output: Predicted edges,

A—
Input: Embeddings of
two nodes, C and S 7
A_>

captures dependences

Tensor factorized model

between different edge types

\/
p(A, r,A) = o(z. D, RD,,z,)

p(A, r;,A) = 0(z,D,,RD,,z,)
P(A, r3,A) =o(z!' D, RD, z,)

p(&, r4,A) — O-(ZZDT4RD7‘4ZS)

N

Probability that ¢ and S are
linked by an edge of type r,

p(A’ rn!A) — J(ZZDT’nRD’FnZS)

R, D,., Parameter weight matrices
Modeling Polypharmacy Side Effects with Graph

Convolutional Networks, Bioinformatics, 2018 .
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We need Polypharmacy Dataset

Objectiy
all drug

We buil
= 4.0
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= 18,
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= Dry
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A Drug O Protein

ry Gastrointestinal bleed side effect A&—Q Drug-protein interaction
I'> Bradycardia side effect O©—O Protein-protein interaction

Drug-drug
My

Drug-protein

LH6—O

Protein-protein

o—oO

Gives multimodal network with over 5 million edges

separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 8



We apply Decagon to
the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin,
when taken together, break down muscle tissue?

Simvastatin

!
?r
]

/|

5 (breakdown of muscle tissue)

Ciprofloxacin

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Results: Side Effect Prediction
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0.643

0.567

0.476

AUROC AP@50

m Our method (Decagon)

O RESCAL Tensor Factorization [Nickel et al., ICML'11]

@ Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]
O Shallow Network Embedding [Zong et al., Bioinformatics'17]

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 0
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New Predictions

Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 20127

Rank|Drug Drug Side effect Evidence found
1 |Pyrimethamine Aliskiren Sarcoma, T
2 |Tigecycline Bimatoprost ~ Autonomic 1
3 |Telangiectases Omeprazole Dacarbazine / \

4 |Tolcapone Pyrimethamine Blood brain

Case Report radache

Severe Rhabdomyolysis due to Presumed Drug Interactions . .

between Atorvastatin with Amlodipine and Ticagrelor ular acidosis
Anap~__— Azelaic acid Cerebral thrombosis

8 |Atorvastatin = Amlodipine Muscle inflammation

9 |Aliskiren Tioconazole Breast inflammation

10 |Estradiol Nadolol Endometriosis

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Follow-Up: Adverse Events for

-log1o(Adjusted P-Value)
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( Adverse event (AE) @; \

Medications

.

B

. 4

o

Report ID:
Reporting date: 92,891 reports - - J
Medications: —— 94 AEs D —
Adverse events: :;v::e event (AE)
Severity vector:
Patient profile: :epo:tﬁ u):d .
eporting ate:
Age: Me%ica(igns:
Sex: Adverse events:
Weight: I geyerily vector:
tient profile:
Reporter qualification: )}) B ,'f;e:pm s
S— S Sex:
Wee);ght
Dru g Reporter qualification:
interference 74,754 reports
64 AEs

m . 1 15
AEs below p':e.'Pa“dem'c AEs above P"'e'Pa“demlc g © Observed reporting of cardiac arrest © Observed reporting of palpitations
levels (purified AEs) levels (enriched AEs) = * Expected reporting of cardiac arrest * Expected reporting of palpitations
° @Respiratory arrest > 10
Hallucination 13 H .
o | H
H o | ;
& Y ArR2)
w e
o !
Neuropathy peripheral 2013 2014 2015 2016 2017 2018 2019 2020 ’ 2013 2014 2015 2016 2017 2018 2019 2020
Renal injury ®
° c
Scenario 1 Scenario 2 Scenario 3
Cardiac arrest Adverse Adverse Adverse
[ ) event Drug event event Drug
Dyspnoea exertional - o
End stage renal disease ® ° Hypogrargmaglobulinaemia z - @ —— ’
‘ Gastrointestinal Tkl Py I
Infective pulmonary ;haemorrhage °
exacerbation ®Pain in jaw Valsg:#lazl
. calcification i
Granulocytopenia ® .Delusion ® Pandemic Pandemic Pandemlc
[ J
Large intestine polyp. o O o @ ° @ @
|P-value=0.05 s Te
- 1 + Significant drug-AE (or “drug-AE pair’-pandemic) association
—4 —3 2 -1 0 1 2 3 4 € No significant drug-AE (or “drug-AE pair’-pandemic) association

log2(ROR)

Population-scale patient safety data reveal inequalities in adverse events before and during

COVID-19 pandemic, medRxiv: 2021.01.17.21249988

22
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Safe drugs and drug combinations
Methods: Multi-relational link prediction on KGs

m_Patient outcomes & disease classification
‘g Methods: Subgraph embeddings

= ffective disease treatments
Methods: Few-shot learning for graphs
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Disease Diagnosis

= Phenotypes are observable characteristics
resulting from interactions between genotypes, as
well as environment

= Physicians utilize standardized vocabulary of
phenotypes to describe human diseases.

* By modeling diseases as collections of associated
phenotypes, we can diagnose patients based on their

presenting symptoms
' m Medical History:
Has asthma?

Other chronic issues?

Symptoms:
r x Severe Cough
Wheezing

Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear) o
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Diagnosis Task

= Graph: Consider a graph G built from the
standardized vocabulary of phenotypes:

= Nodes: phenotypes; edges: relationships between
phenotypes

= Patient is a set of phenotypes, a subgraph S in ¢

= | earning Task: Predict the disease (label) most
consistent with the phenotype subgraph S

Disease phenotypes HPO network Graph ML model Disease subgraph predictions
r——=—-=-=-=-- I Lysosoma I
| Disease 1: HPO-... | Glycosylation
| Disease 2: HPO-... | Graph .
| Disease 3: HPO-... | machine —_— Carbohydrate
| Disease 4. HPO-... I |eaming Lipid
: : Prediction Task Carbohydrate
. ) rediction Task:
| Disease N: HPO-... I Subgraph Classification .
Disease N

Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear) o5
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= Goal: Learn subgraph embeddings such that the
likelihood of preserving subgraph topology is
maximized in the embedding space

= §5; and §; with similar subgraph topology should be
embedded close together in the embedding space

Zg 1
o HEEEN

Zs,
¢ HREER

Embedding space

Subgraph Neural Networks, NeurlPS 2020
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challenging?
= Need to predict over structures of varying size:
= How to represent subgraphs that o ho 1) )
are not k-hop neighborhoods? st ‘ e

= Rich connectivity patterns, both internally a 8=
externally through interactions with the rest of G:

= How to inject this information into a GNN"?
= Subgraphs can be:

= | ocalized and reside in our region of the graph
= Distributed across multiple local neighborhoods

Subgraph Neural Networks, NeurlPS 2020
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Subgraph Neural Networks

Problem (Subgraph Representations and Property Prediction). Given subgraphs & =
{S1,S2,...,5,}, SUBGNN specifies a neural message passing architecture Eg that generates
a ds-dimensional subgraph representation zs € R% for every subgraph S € S. SUBGNN uses the

representations to learn a subgraph classifier f : S — {1,2,...,C} for subgraph labels f(S) = 9s.
& Neighborhood

& Structure
()

]
w&. & Position

-

* Subgraph labels

R &C, C, &C;
SUB-GNN Subchannel
SUB-GNN Channel Internal (1) Border (B)
Position (P) Distance between S;’s components Distance between S; and rest of G
Neighborhood (N) Identity of .S;’s internal nodes Identity of S;’s border nodes
Structure (S) Internal connectivity of .S; Border connectivity of S;

28



A Note on Problem Formulation

= SUbGNN puts forward a definition of a subgraph
prediction learning task

= [t is different from other canonical tasks on graphs:
= Node prediction: Predict property of a node
= | ink prediction: Predict property of a node pair
= Graph prediction: Predict property of an entire graph

Subgraph Neural Networks, NeurlPS 2020



Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021

SUbGNN: Overview

= Part 1: Hierarchically
propagate messages in G:

= Propagate messages from
anchor patches to . .

Aggregate information

Su bg raphs from subgraphs

= Aggregate messages into a
final subgraph embedding
= Part 2: Route messages
through 3 channels to
capture subgraph topology:
position, neighlborhood,
structure

Aggregate information
from neighbors

Subgraph Neural Networks, NeurlPS 2020
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1: Subgraph Message Passing

= Property x-specific messages m, are propagated
from anchor patches to subgraph components
= Anchor patches are helper subgraphs randomly

sampled from G; patches Ap, Ay, and A for
position, neighlborhood and structure

MSG;?_)S — Yx (S(C), Ax) - Ay

G

Subgraph

(e) .
Bx,c = AGGM({MSG;?X_)S VA € .Ax}), componentfia .4 B

Subgraph
component

hy .|« o(Wx - [gx,c§ hx,c])7

\property—specific representation of subgraph
component at the previous layer that gets updated A8” %, paten
Subgraph Neural Networks, NeurlPS 2020 o
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2. Property-aware Routing

= SUbGNN specifies three channels for position,
neighborhood, and structure

= Fach channel x has three
key elements: S Subgraph component ‘
= Similarity function y,: (5(9,4,) » ;
[0,1] to weigh messages £
exchanged between patches and
subgraph components Neiahborhood
» Anchor patch sampling function ;
0. (G,519) - A, to sample S5 I8
patches from underlying graph ’
» Anchor patch encoder y,: A, —
a, to encode patches into :
embeddings a, : -
= These functions can be learned
or pre-defined

READOUT

SUBGRAPH COMPONENT

Structure

Subgraph Neural Networks, NeurlPS 2020

32
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SUbGNN: Recap

Channel outputs z, are concatenated 2[11111]

to produce a final subgraph 1NOaVa
representation zg INANOAINOD HAVYDLNS

o" (2] ‘s‘
0’ N s‘
_"’ ‘s
Aggregate information . 5
from subgraphs : 3 .
S o ) et
2 S/ 2N 2
::‘: (@) 3]
: 8 g 2
0 =) N
: [{7)
' zZ
Aggregate information .
from neighbors

Subgraph Neural Networks, NeurlPS 2020 -
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Setup: Subgraph Datasets

(a) Base graph and new subgraph (b) Planting (c) Stapling

Tt B By

Nodes in graph (colors corresponding to a different subgraph)

o O
—_— Edges in graph
O Shared nodes between base graph and new subgraph

Shared edges between base graph and new subgraph

Subgraph labels: Binned values of a metric act as subgraph labels

Metrics:
= DENSITY tests if a method can capture the internal structure of subgraphs
= CUT RATIO tests if a method can capture border structure
= CORENESS tests if a method can capture border structure and position
= COMPONENT tests if a method can capture internal and external position

34



Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021

ts: Synthetic Data

DENSITY

CUT RATIO

CORENESS

COMPONENT

Node Averaging
Meta Node (GIN)

D+0.041
0.44240.052

0.690+0.021

).358+0.055
0.423+0.057
0.284+0.052

D.030+0.050
0.611+0.050
0.519+0.076

0. 16+<0.001
0.784+0.046
0.935+<0.001

Conclusion: SUbGNN can capture well
different aspects of subgraph topology

(position, neighborhood, structure)

=  Shown are Micro-F1 scores + std across 100 runs
=  SubGNN outperforms baselines by 75.4%; the strongest baseline by 17%
=  Graph classification (GC) methods:
= perform quite well on DENSITY (internal structure), as expected
= perform poorly on datasets requiring a notion of position or border connectivity

= Meta-node methods:

= perform well on COMPONENT dataset

35



Real-World Datasets

= Four real world datasets

= Each consists of a base graph and subgraphs
with associated labels

= HPO-METAB and HPO-NEURQO are clinical diagnostic
tasks

= They ask the following: What is the subcategory of
metabolic/neurological disease consistent with the
phenotypes (i.e., phenotype subgraph)?
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Results: Real-World Datasets

| |

| |

Method PPI-BP | HPO-NEURO | HPO-METAB | EM-USER

SUBGNN (+ GIN) 0.599+0.024 | 0.632+0.010 | 0.537+0.023 | 0.814+0.046
SUBGNN (+ GraphSAINT) | 0.583+0.017 | 0.644+0.019 | 0.428+0.035 |0.816+0.040
Node Averaging 0.297+0.027 | 0.490+0.059 | 0.443+0.063 |0.808+0.138
Meta Node (GIN) 0.306+0.025 | 0.233+0.086 | 0.151+0.073 |0.480+0.089
Meta Node (GAT) 0.307+0.021 | 0.259+0.063 | 0.138+0.034 |0.471+0.048
Sub2Vec Neighborhood 0.306+0.009 | 0.211+0.068 | 0.132+0.047 |0.520+0.090
Sub2Vec Structure 0.306+0.021 | 0.223+0.065 | 0.124+0.025 |0.859+0.014
Sub2Vec N & S Concat 0.309+0.023 | 0.206+0.073 | 0.114+0.021 |0.522+0.043
Graph-level GNN 0.398+0.058 | 0.535+0.032 | 0.452+0.025 |0.561+0.059

= SUubGNN outperforms baselines by an average of
/7% on synthetic and 125% on real-world datasets

= SUbGNN channels encode their intended properties

Standard deviations from runs with 10 random seeds

37
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Safe drugs and drug combinations
Methods: Multi-relational link prediction on KGs

JPatient outcomes & disease classification
Methods: Subgraph embeddings

= ffective disease treatments
@ Methods: Few-shot learning for graphs
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Finding Cures for Emerging Diseases

The traditional approach of iterative development,

experimental testing, clinical validation, and approval of

new drugs are not feasible.

A more realistic strategy relies on drug repurposing,
requiring us to identify clinically approved drugs that
have a therapeutic effect in COVID-19 patients.

Predictions Finalized

Human Interactome
N = 18,508 proteins X
L = 332,749 PPIs

Network Diffusion (D1 - D5)

SARS-COV2 targets
320 human protens % % %

Drugs Network Proximity (P1 - P3)

7,591drugs B

4,187 drug targets e 1%
oo—
Vel
ot

Input Data @ Drug Repurposing Predictions
Artificial Intelligence (A1 - A4)

Experimental Screening @

E918 Outcomes

Strong 37
Weak 40
Cytotoxic 35
No-Effect 806

E74 Outcomes

Strong 11
Weak 10
Cytotoxic 14

No-Effect 39

Experimental Readout

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229

39
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L -

ol — " ) »
A"i)r? h:i"zt; R
10,009
compounas

New tricks
for old drugs

Faced with skyrocketing costs for developing
new drugs, researchers are looking at ways
to repurpose older ones — and even some that
failed ininitial trials.

‘/ 1 compound

Phase lll FDA
approval
2 years 1-2 years

Phase |
Phase Il

Drug discovery Preclinical

testing
3 years

12-16 years, ~$1 billion to $2 billion

A SHORTER TIMESCALE Drug repositioning

Because most repositioned drugs have already passed the early
phases of development and clinical testing, they can potentially win
approval in less than half the time and at one-quarter of the cost. ~6 years, ~$300 million

40
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What drug treats what disease”

Drugs Diseases

&

Goal: Predict what diseases
a new molecule mlght treat

o?ﬁﬂ

“;

— “Treats” relatlonshlp

? | Unknown drug-disease relationship
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Why Is finding treatments for a new
disease challenging?

Generalizing to new phenomena is hard:

o Prevalling methods require abundant label information

o However, labeled examples are scarce

o Examples: Novel drugs in development, emerging
diseases, rare diseases, hard-to-diagnose patients

What prevailing What happens in
real world

42



Background: Meta Learning

Meta-learning model
= [rained over a variety of learning tasks

= Optimized for best performance on a distribution of
tasks, including potentially unseen tasks

Fach task Is associated with a dataset D,
containing both feature vectors and true labels

The optimal model parameters are:

0" = arg rnoin Ep~pm)[Lo(D)]

It looks very similar to a normal learning task,
but one dataset Is considered as one data sample
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Background: Few-Shot Learning

Meta-Training At test time, we need to build a “duck vs.
A dolphin vs. chicken” classifier. However, we
(
o . only 2 examples of ducks, 2 examples of
Training task 1 Training tasf  dolphins, and 2 examples of chicken!
Support set Support set Few-shot learning makes this possible.

g Goal: How to make predictions on a new
" graph or a new label set when we have only a &
handful of labels?
Query set Query set Query set

An example of 2-shot 3-way image classification

Few-shot learning: Instantiation of meta learning in the field of supervised learning
K-shot N-class classification: K labeled examples for each of N classes
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Problem Formulation: G-Meta

A Single graph & disjoint labels

Meta-Training Meta-learner needs to
~ G classify an unseen label set
fo by observing other label

sets in the same graph

"\ |
O ? O Meta

Meta-Testing | |Learner

@N Q Each task is a batch of a
few nodes/edges from a
/fi“‘ ) different label set in the
O ) ' same graph

Label set Y: O O Label setY*:. O

Graph meta-learning problem 1: Single Graph and Disjoint Labels. We have a graph G with a
distribution of label set p(Y|G). The goal is to adapt to an unseen label set Y, ~ p(Y|G) by learning
from tasks with other label sets Y; ~ p(Y|G), where Y; N Y, = () for every label set Y.

Graph Meta Learning via Local Subgraphs, NeurlPS 2020 i
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G-Meta: Overview

Meta—'IA'raining
( |
Training task 1 Training task 2 :
Support set Support set

@ O O

~ Node1 Node2 Node3

" ® 0 @

Node 4 Node5 Node 6

N=3
Query set

@ O O

Nodea Nodeb Nodec

Label set 1

O O @

Node 7 Node 8 Node 9

O O @

Node 10 Node 11 Node 12

Query set

@ O O

Noded Nodee Node f

Label set 2

(O ~ single graph

Meta—'[esting

[ |
Test task 1

Support set

@ O O

Node 13 Node 14 Node 15

@ O O

Node 16 Node 17 Node 18

Query set

@ O O

Nodeg Nodeh Nodei

L abel set 3
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Key ldea: Local Subgraphs

= Neural routing across
subgraphs (not entire graphs!)
= Subgraph signature functions G-Meta: Subgraph
learn how to map the structure of O-Slgnature functions
a sampled subgraphs to an
effective initialization for a GNN
= \We consider a distribution over
subgraphs as the distribution

Extract subgraphs that

over tasks from which a global RSEEEEEE
Apply GNN to each

set of parameters are learnt subgraph individually

= Deploy this strategy to train
GNNs few-shot link prediction

47
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What is the value of subgraphs7

Query subgraph
x4 embedding

Support subgraph

= Two sources of GNN power: port
embedding

= |Label propagation: Nodes with the same label are nearby in
the graph

= Structure similarity: Nodes with the same label have similar
network shapes in their local neighborhoods

= \When labels are scarce:

= Label propagation is not sufficient

= \When only a handful of nodes are labeled, it is challenging to
efficiently propagate labels through the entire graph

= Graph-level embeddings cannot capture structure of large graphs

= Need to better leverage structural equivalence
= |ocal subgraphs capture structural information

* G-Meta learns a metric to classify query subgraph using the
closest point from the support set [It compares query subgraph
embedding to the support subgraph embedding]

Graph Meta Learning via Local Subgraphs, NeurlPS 2020 .
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Theoretical Motivation for G-Meta

Theorem 1 (Decaying Property of Node Influence). Let t be a path between node u and node v
and let D%, be a geometric mean of node degrees occurring on path t. Let DgM = min:{Dk,,}

and h, = d(u,v). Consider the node influence I, ,, from v to u. Then, I, , < C/(DE*M)"*.

Theorem 2 (Local Subgraph Preservation Property). Let S, be a local subgraph for node u with
neighborhood size h. Let node v be defined as: v = argmax,,({I, ,|w € V \ V*}). Let t be a

path between u and v and let DéM be a geometric mean of node degrees occurring on path t. Let
D¢y = ming{ D&y} The following holds: Ry (u) < C/(Dgy )"t

The influence of a node on the target node
decays exponentially as we go further away
from the target

TL;DR;:

= [ocal subgraphs around target nodes
contain all the relevant information

= [ ocal subgraphs preserve near the same
feature information as the entire graph

Graph Meta Learning via Local Subgraphs, NeurlPS 2020

O—0—0—0—0—0—0 High Influence
v u

O Low Influence
V u
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COVID-19 Repurposing Dataset

Viral-Human Human-Human Drug-Human
Protein-Protein Interaction Protein-Protein Interaction Protein-Protein Interaction

O—CO O

How to represent COVID-19?7 Network neighborhood | viral Disease Module: Gordon et

_ : al., Nature 2020 expressed 26 of the
of human PPI network targeted by SARS-CoV2 virus | ¢ cuns covo oroteins and used

AP-MS to identify 332 human
proteins to which viral proteins bind

Viral Disease Module Drug Disease Module

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229
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Results: Embedding Space

K
m Drug "~ .t
® Disease ) ':""r'. . -
2 " . '-;k an ey
~-" i
wik -

Closest drugs in the

embedding space
‘ Atovaquone Teriflunomide
‘g 8 g Rifapentine Ixekizumab
v Chloroquine Praziquantel
Mifepristone Ritonavir
Lindane Troleandomycin
Secukinumab  Budesonide
Wwte v Elbasvir Loxoprofen
8 . Cobicistat Fludrocortisone
x ;.' g g *‘*« Idelalisib Crizotinib
S* LA - Daclatasvir Elvitegravir

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv.:2004.07229
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Results: COVID-19 Repurposing

Individual ROGC We test each pipeline’s ability to

10 J recover drugs currently in clinical trials
| for COVID-19 (67 drugs from

ClinicalTrials.gov).

D 0.8
© The best individual ROC curves are
© 06 AL: 0.86 obtained by the Al-based methods.
= R
é 0.4 J ——== The second-best performance is
o ) o Dxose provided by the proximity P3. Close
|§ 05 ‘ﬁfj — paoss behind is P1 with AUC = 0.68 and
. _— Pl:'O..68 AUC - 058
LrAr P2: 0.58
0o K o2 R

Diffusion methods offer ROC between

0.0 0.2 0.4 0.6 0.8 1.0 0.55-0.506.
False positive rate

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229 .,
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Results: Experimental Validation of
Predictions
)/

CRank Drug Name 17 Celecoxib
. . 18 Betamethasone

1 Ritona

2 Islo?winaz\ﬂjr 19 Prednisolone

3 Troleandomycin 20 Mifepristone

4 Cilostazol 21 Budesonide

5 Chloroquine 22 Prednisone

6 Rifabutin 23 Oxiconazole

7 Flutamide 24 Megestrol acetate

8 Dexamethasone 25 Idelalisib

9 Rifaximin 26 Econazole

10 Azelastine ~7 ”””‘*“‘*j'"

1 Crizotinib Ranked lists of drugs
New algorithms:

Prioritizing Network Communities, Nature Communications 2018
Subgraph Neural Networks, NeurlPS 2020
Graph Meta Learning via Local Subgraphs, NeurlPS 2020

Results: 918 compounds screened for their efficacy
against SARS-CoV-2 in VeroE6 cells:

= 77 showed strong/weak effect being active over

a broad range of concentrations

National Emerging Infectious = An order of magnitude higher hit rate among top
Diseases Laboratories (NEIDL) 100 drugs than prior work

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229
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Results: Network Drugs

= /6/77 drugs that successfully reduced viral infection
do not bind proteins targeted by SARS-CoV-2:

= These drugs rely on network-based actions that cannot
be identified by docking-based strategies

Strong
Weak '
CRank Drug Name CRank Drug Name CRank Drug Name Dl reCt targ et
5 Chloroquine 423 Pitavastatin 742 Mianserin d D 1 2 r
6 Rifabutin 431 Tenoxicam 755 Clofazimine rUQS ( - ) e
9 Rifaximin 438 Quinidine 767 Chlorpromazine 4
10 Azelastine 456 Sertraline 772 Imipramine ‘
16 Folic acid 460 Ingenol mebutate 830 Promazine
32 Methotrexate 463 Norelgestromin 900 L-Alanine
33 Digoxin 493 Sildenfil 917 Moxifloxacin /
44 Hydroxychloroquine 499 Eliglustat 933 Tasimelteon
50 Omeprazole 518 Ulipristal 995 Vandetanib
113 Clobetasol propionate 553 Cinacalcet 1000 Azilsartan medoxomil
118 Auranofin 556 Perphenazine 1020 Frovatriptan \ 4
120 Vinblastine 558 Idarubicin 1034 Zolmitriptan T~
199 Fluvastatin 564 Perhexiline 1035 Procarbazine ™~
210 Clomifene 569 Amiodarone 1093 Asenapine \ /
233 Ibuprofen 577 Duloxetine 1107 Dyclonine
235 Ivermectin 585 Toremifene 1140.5 Clemastine
243 Atorvastatin 586 Afatinib 1194 Prochlorperazine
253 Pralatrexate 601 Amitriptyline 1222 Miglustat "
263 Cobimetinib 626 Meclizine 1224 Prenylamine |
269 Hydralazine 635 Valsartan 1276 Dalfampridine |
297 Propranolol 651 Eletriptan 1314 Cinchocaine
317 Osimertinib 673 Sotalol 1355 Methotrimeprazine
348 Vincristine 678 Thioridazine 1396 Methylthioninium
367 Doxazosin 695 Chlorcyclizine 1403 Metixene
397 Rosiglitazone 707 Omacetaxine mepesuccinate 1443 Trifluoperazine
398 Aminolevulinic acid 721 Candesartan

58/77 drugs with positive experimental

outcome are among top 750 ranked drugs Network drugs (D3)
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Transfer Learnlng Across Graphs:
Tree-of-Life Dataset

Network of an
eukaryotic species

Network of a
bacterial species

NS I
N
N
\

e

Motivation: How can we leverage PPl networks of

model organisms to complete human PPl network”?
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Problem Formulation: G-Meta

Multiple graphs & shared labels

Meta-Training Meta-learner needs to
@"’ Gi make predictions on a
o new graph by learning
GN 27> | from other graphs with
O:@ Meta the same label set
Meta-Testing | Learner
®~ 6. -
Each task is a batch of a
b f"* ) few nodes/edges from
@l O @ the same label set but

from a different graph

Label setY : . O

Graph meta-learning problem 2: Multiple Graphs and Shared Labels. We have a distribution
of graphs p(G7) and one label set Y. The goal is to learn from graph G; ~ p(G) and quickly adapt to
an unseen graph G. ~ p(G), where G; and G, are disjoint. All tasks share the same labels.

Graph Meta Learning via Local Subgraphs, NeurlPS 2020 -
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Few-Shot Learning across Graphs

Meta—'IA'raining
(
Training task 1 Training task 2
Support set Support set

@ O O

Node 1 Node?2 Node3

@ O O

Node 4 Node5 Node6

[@\
Il

N=3
Query set

@ O O
Nodea Nodeb Nodec

Label set 1

@ O O

Node 7 Node 8 Node 9

@ O O

Node 10 Node 11 Node 12

Query set
®@ O O
Noded Nodee Nodef

Label set 1

Meta—'[esting
( |
Test task 1

Support set

®@ O O

Node 13 Node 14 Node 15

®@ O O

Node 16 Node 17 Node 18

Query set
®@ O O
Nodeg Nodeh Nodei

L abel set 1
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G-Meta: Results

Graph Meta- Single graph | Multiple graphs | Multiple graphs | Multiple graphs | Multiple graphs
Learning Problem | Disjoint labels | Shared labels Disjoint labels Shared labels Shared labels
Prediction Task Node Node Node Link Link
Dataset ogbn-arxiv Tissue-PPI Fold-PPI FirstMM-DB Tree-of-Life
M-eta-Graph N/A N/A N/A 0.71940.020 0.7054-0.004
Meta-GNN 0.273+0.122 N/A N/A N/A N/A
FS-GIN 0.3364-0.042 N/A N/A N/A N/A
FS-SGC 0.34740.005 N/A N/A N/A N/A
KNN 0.392+0.015 0.619+0.025 0.4334-0.034 0.603+0.072 0.649+-0.012
No-Finetune 0.364+0.014 0.516+0.006 0.376+0.017 0.509+0.006 0.505+0.001
Finetune 0.359+0.010 0.521+0.013 0.370+0.022 0.51120.007 0.504+0.003
ProtoNet 0.372+0.017 0.546+0.025 0.3824-0.031 0.779+0.020 0.697+0.010
MAML 0.389+0.021 0.7454+0.051 0.482+0.062 0.7584+0.025 0.719+0.012

« (G-Meta can successtully learn in challenging, few-shot learning
settings: up to 29.9 % over previous works and 16.3 % over
other meta learning methods

« (G-Meta scales to large graphs: on our new Tree-of-Life dataset
comprising of 1,840 graphs, 100x increase in graph size
relative to prior work

Reported is multi-class classification accuracy (five-fold average) and standard deviation. N/A means
the method does not apply. Graph Meta Learning via Local Subgraphs, NeurlPS 2020 o
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Safe drugs and drug combinations
Methods: Multi-relational link prediction on KGs

JPatient outcomes & disease classification
Methods: Subgraph embeddings

Effective disease treatments
Methods: Few-shot learning for graphs




