GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

1. Take-Home Message

GNNGuard is a model-agnostic approach that can defend any Graph Neural Network against a variety of poisoning adversarial attacks.

2. Featured Properties

- **Defense against a variety of attacks:** e.g., directly targeted, influence targeted, and non-targeted attacks
- Integrates with any GNNs
- State-of-the-art performance on clean graphs
- Homophily and heterophily graphs: the first technique defending GNNs against attacks on both homophily and heterophily graphs

3. Motivation

- GNNs are highly vulnerable to adversarial attacks
 - Adversarial attacks: inject carefully-designed perturbations (e.g., fake edges) to graph to degrade GNN classifier
- The vulnerability significantly prevent GNNs from real-world applications

Xiang Zhang, xiang_zhang@hms.harvard.edu Marinka Zitnik, marinka@hms.harvard.edu

VE IR

4. Method

GNNGuard detects fake edges and alleviate the negative impact on prediction by removing them or assigning them lower weights in neural message passing.

GNNGuard contains two key components:

- Neighbor Importance Estimation: 1) estimate the importance of each edge in neighborhood; 2) prune fake edges and assign lower weights to likely-fake edges
- Layer-Wise Graph Memory: 1) keeps partial memory of the pruned graph structure from the previous layer;
 2) smooth the evolution of edge pruning

GNNGuard can defend heterophily graph against adversarial attack by estimating neighbor importance through graphlet signature.

5. Experiments

GNNGuard outperforms existing defense approaches by **15.3%** on average across five GNNs, three cutting-edge defense baselines, and three adversarial attackers.

Dataset Description							
Dataset	Ν	Е	М	С	Node features		
Cora	2,485	5,069	1,433	7	Binary		
Citeseer	2,110	3,668	3,703	6	Binary		
ogbn-arxiv	31,971	71,669	128	40	Continuous		
DP	22,552	342,353	73	519	Continuous		
Synthesized	1,000	3,200	-	6			

Dataset Description

Results in Graphs with Homophily

Model	Dataset	No Attack	Attack	GNN-Jaccard	RobustGCN	GNN-SVD	GNNGUARD
GCN	Cora Citeseer ogbn-arxiv DP	0.826 0.721 0.667 0.682	0.250 0.175 0.235 0.215	0.525 0.435 0.305 0.340	$\begin{array}{c} 0.215 \\ 0.230 \\ 0.245 \\ 0.315 \end{array}$	$0.475 \\ 0.615 \\ 0.370 \\ 0.395$	0.705 0.720 0.425 0.430
GAT	Cora Citeseer ogbn-arxiv DP	0.827 0.718 0.669 0.714	0.245 0.265 0.210 0.205	0.295 0.575 0.355 0.320	$\begin{array}{c} 0.215 \\ 0.230 \\ 0.245 \\ 0.315 \end{array}$	$ \begin{array}{r} 0.365 \\ 0.575 \\ 0.445 \\ 0.335 \end{array} $	0.625 0.765 0.520 0.445
GIN	Cora Citeseer ogbn-arxiv DP	0.831 0.725 0.661 0.719	0.270 0.285 0.315 0.245	0.375 0.570 0.425 0.410	0.215 0.230 0.245 0.315	$0.375 \\ 0.570 \\ 0.475 \\ 0.405$	0.645 0.755 0.640 0.460
JK-Net	Cora Citeseer ogbn-arxiv DP	0.834 0.724 0.678 0.726	0.305 0.275 0.335 0.220	0.445 0.615 0.375 0.335	$\begin{array}{c} 0.215 \\ 0.230 \\ 0.245 \\ 0.315 \end{array}$	$0.425 \\ 0.610 \\ 0.325 \\ 0.360$	0.690 0.775 0.635 0.450
Graph SAINT	Cora Citeseer ogbn-arxiv DP	0.821 0.716 0.683 0.739	0.225 0.195 0.245 0.205	0.535 0.470 0.365 0.315	$\begin{array}{c} 0.235 \\ 0.350 \\ 0.245 \\ 0.295 \end{array}$	0.460 0.395 0.315 0.330	0.695 0.770 0.375 0.485

Results in Graphs with Heterophily

Aodel	No Attack	Attack	GNN-Jaccard	RobustGCN	GNN-SVD	GNNGUARD
GCN GAT GIN K-Net GraphSAINT	0.834 0.851 0.891 0.889 0.876	$\begin{array}{c} 0.385 \\ 0.325 \\ 0.450 \\ 0.425 \\ 0.415 \end{array}$	N/A N/A N/A N/A N/A	0.525 0.575 0.575 0.575 0.575 0.575	$0.595 \\ 0.635 \\ 0.650 \\ 0.640 \\ 0.625$	0.715 0.770 0.775 0.735 0.755

