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Science crucially depends on
scientific Instruments

s Lorne o Cork st L diffivonts Sockioms o a6
P e— |

Robert Hooke,
Micrographia, 1665

Physical instruments Need instruments for modern,
facilitate discoveries data-intensive sciences
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Knowledge Discovery

Data + ML/AI

Predictions
and insights
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Opportunities for Al
IN health & medicine

Preliminary diagnosis,
early disease
detection, self-care

Clinical trial participation,

drug discovery, Al-driven
medical devices

Improve administrative
workflows, costly
back-office problems

Real-time patient
interventions

Marinka Zitnik - Stanford U

niversity - http://ai.stanford.edu/~marinka

Automated image
diagnosis,
language modeling

Comorbidities,
chronic disease
treatments

Inpatient & outpatient
policies of care

Help protect health
data, avoid medical
errors



Why Is it so challenging
to realize this vision?

Example:
gt 1

H ‘ ﬂ*‘i‘

Genome

expression

Multi-scale: molecules, individuals, populations
Heterogeneous: experimental readouts, curated annotations, self-reported
Confounded: data from different labs, hospitals, biotech platforms, species



Networks allow for integration
of biomedical data
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Rich, multimodal data

Maghipe Learning for Integrating Data in Biglpgy, and Medicing:frinsinles.Rractica.and Opportunities, Information Fusion 2Q19

Multiple scales
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Many biomedical data
are networks
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other systems
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Recombination
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Prioritizing Network Communities, Nature Communications 2018
Network Enhancement as a General Method to Denoise Weighted Biological Networks, Nature Communications 2018
Evolution of resiliencesimipreiciadnieactiames. Acoss the e of life, PNAS 2019
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How to do machine learning
on biomedical networks”?

Predictions

Networks and insights

Biomedical ML opens new avenues for:

» Understanding nature, analyzing health, and developing medicines
= How predictive modeling is performed today at the fundamental level




loday’s lalk

Representation learning for
biomedical data

2. Three research applications:

= Used new approach to predict safety and
side effects of drug combinations

= Used new approach to repurpose old
drugs for new diseases

= Used new approach to answer logical
queries on knowledge graphs



How to learn deep models
on biomedical networks?

Predictions, e.g., properties of cells,
patient outcomes, disease-gene

| associations, new drug targets, treatment
"| response, drug’s adverse effects




Prevalling Deep Models

Primarily designed for grids or simple sequences:

These models brought extraordinary gains in
computer vision, natural language

processing, speech, and robotics

But are unable to consider interactions, the
essence of networks



Why Is deep learning on
networks hard?

Biomedical networks are far more complex!

and il

Images

Biomedical networks

Examples:

Human contact networks, Disease networks,
Patient networks, Cell similarity networks,
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A Nalve Approach

= Join adjacency matrix and features
= Feed them into a deep neural model:

X hidden layer 1 hidden layer 2 hidden layer 3
input layer

- _ L)
A B C D E Feat — N\
’ \ s » = ; 2 NS
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© B i 0 0 1 1 0 0 Sty
© D 11 1 0 1 1 1 X -
E Z -;____: S 7 Jéz; -,
. 0 1 0 1 0 1 0 J — ,,f*”"’*ff!i::aUf—"‘il—f"""f—?::-

* |ssues with this idea:
= O(N) parameters
= Not applicable to graphs of different sizes
= Not invariant to node ordering

11/6/19 Marinka Zitnik - Stanford University - http://ai.stanford .edu/~marinka



Today’s goal: Deep learning for
biomedical networks

Input: Knowledge network

Output: Predictions, e.g., properties of
cells, patient outcomes, disease-gene
associations, new drug targets, treatment
response, drug’s adverse effects




Setup: A Multimodal Network

r; Edgetypei
O A Node types

E.g., Specific type of drug-
drug interaction (ry)
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Overview of our deep learning
approach for networks

1. Encoder: Take a multimodal Embedding

network and learn an embedding A we==) uEEEE

@ for every node © ===) EEEEE
2. Decoder: Use the learned Embedding

. . EEEEE 4
embeddings to predict labeled Embedding I rL

edges between nodes ]



Embedding Nodes

Node v

-
N
]Rd

Feature representation,
embedding

f:v—>IRd

Objective: Map nodes to d-dimensional embeddings
such that nodes with similar network neighborhoods are
embedded close together

Next: How to learn mapping function f?



Embedding Nodes

Input d-dimensional
embedding space

Goal: Map nodes to d-dimensional embeddings such
that nodes with similar network neighlbborhoods are
embedded close together



Key ldea: Aggregate Neighbors

Generate embeddings based on local network
neighborhoods separated by edge type

1) Determine a node’s computation
graph for each edge type

2) Learn how to transform and propagate
information across computation graph

Example for edge type r3: =
= A
=

1st order

neighbor of v A




Example: Aggregate Neighbors

1st order network 1st order computation
neighborhood of node C graph of node C

W<k) Ah\(ki

h(k)
r
r2 c (k4+1)
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Every node learns how to
aggregate 1ts own neighbors
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Deep Model: Many Layers

'*’l—’leayer-Q
ol &

\
fo=

I/ *

1st order
neighbors

2nd
neig

order
hbors

Model can be of arbitrary depth:

Nodes have embeddings at
each layer

Layer-0O embeddings are nodes
input features

Deep model with K layers:

Convolves information across
K™ order neighborhood

Embedding of a node depends
on nodes at most K hops away

Recap: Nodes with similar
network neighborhoods are
embedded close together



The Math: Deep Graph Encoder

Key element: Each node’s computation graph
defines a neural network with a different architecture

= |nitial 0-th layer embeddings are equal to node features:

/¥
h(0) — Aggregate neighbor’s Ability to integrate side
v — X previous-layer embeddings, information about nodes
separated by edge type
= Per-layer update o e embeddings: Previous-layer
embedding of v
L
—1 —1 — 1l
h(®) = ¢<§ > WYY 4 erhlf >> k=1,...,K
T u€NT
= Embeddings after K layers of neighbo aggregation:

Normalization constant, fixed

. K
Zy — th, ) e.g., 1/|NZ|, or learned

Wff“ ) Par




Overview of our deep learning
approach for multimodal networks

1. Encoder: Take a multimodal Embedding
jetwork and learn an embedding A we==) uEEEE

for every node © ===) EEEEE

2. Decoder: Use the learned Embedding

ERERR 4
@ embeddings and make I rL

— Embedding
predictions HEENEN
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What Can We Predict?

* Node prediction: E.g., Predicting protein
functions across tissues

= Pairs of nodes: E.g., Predicting side-effects
and safety of drug combinations

= Subgraph prediction: E.g., Predicting what
drug treats what disease

= Graph prediction: E.g., Predicting properties
of molecules

We can now apply deep learning much more broadly, not
only to medical images and biological, DNA sequences




Overview of our deep learning
approach for multimodal networks

1. Encoder: Take a multimodal Embedding
network and learn an embedding A w=—) uEEER
for every node © ===) EEEEE

n Embeddin

2. Decodelr. Use the learned .....9
embeddings and make Embedding

predictions EEEEE

Training the model: Feed embeddings into any loss function and run stochastic
gradient descent to train weight parameters:

» Use aloss based on e.g., random walks, node proximity in the graph
 Directly train the model for a supervised task (e.g., node classification)
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V./ Representation learning for
biomedical data

2. Three research applications:

Used new approach to predict safety and
side effects of drug combinations

= Used new approach to repurpose old
drugs for new diseases

= Used new approach to answer logical
queries on knowledge graphs



Polypharmacy

Patients take multiple drugs to treat
complex or co-existing diseases

0

46 / O of people over 65 years take more than 5 drugs

Many take more than 20 drugs to treat heart diseases, depression or cancer
0

1 5 / 0 of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed $1 77 billion in the U.S. alone

[Ernst and Grizzle, JAPA'O1; Kantor et al., JAMA'15]
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Unexpected Drug Interactions

Co-prescribed drugs Side Effects

A
Task: How likely will a particular
combination of drugs lead to a

particular side effect?

'y §o @‘

3% 2%
prob. prob.
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Why Is modeling
polypharmacy hard”?

Combinatorial explosion PN

= >13 million possible combinations of 2 drugs ': :

= >20 billion possible combinations of 3 drugs 4 4
Non-linear & non-additive interactions 9. 0-09

= Different effect than the additive effect of individual drugs

*’ﬁ‘ ’i?

Small subsets of patients 'ﬁ‘ j

=  Side effects are interdependent :n.

= No info on drug combinations not yet used in patients ”i



We need polypharmacy dataset

Objectiy
all drug;

We buil
" 4,6
eve

= 18,
Al
COl

= Dry
pra

A Drug O Protein
ry Gastrointestinal bleed side effect A&—Q Drug-protein interaction
I'> Bradycardia side effect O©—O Protein-protein interaction

Drug-drug
My

Drug-protein

LH6—O

Protein-protein

o—oO

A polypharmacy network with over 5 million edges and

over 1,000 different edge types

11/6/19
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We apply our deep approach to
the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin,
when taken together, break down muscle tissue?

Simvastatin

!
?r

/|

5 (breakdown of muscle tissue)

Ciprofloxacin
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Results: Side Effect Prediction

0.834

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.643

0.567

0.476

AUROC AP@50

B Our method (Decagon)

O RESCAL Tensor Factorization [Nickel et al., ICML'11]

B Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]
OShallow Network Embedding [Zong et al., Bioinformatics'17]
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New Predictions

First Al method to predict side effects of

drug combinations, even for combinations
not yet used In patients

Next: Can the method generate hypotheses and give:

= Doctors guidance on whether it is a good idea to prescribe a
particular combination of drugs to a particular patient

= Researchers guidance on effective wet lab experiments and
new drug therapies with fewer side effects



New Predictions

Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 20127

Rank|Drug Drug Side effect Evidence found
1 |Pyrimethamine Aliskiren Sarcoma, T
2 |Tigecycline Bimatoprost ~ Autonomic 1
3 |Telangiectases Omeprazole Dacarbazine / \

4 |Tolcapone Pyrimethamine Blood brain

Case Report padache

Severe Rhabdomyolysis due to Presumed Drug Interactions . .

between Atorvastatin with Amlodipine and Ticagrelor ular acidosis
Anap~__— Azelaic acid Cerebral thrombosis

8 |Atorvastatin  Amlodipine Muscle inflammation

9 |Aliskiren Tioconazole Breast inflammation

10 |Estradiol Nadolol Endometriosis
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Clinical Validation of New
Predictions

Drug interaction markers, lab values, and many other surrogates

NEWTON-WELLESLEY
HOSPITAL

Stanford
MEDICINE

| - MASSACHUSETTS

4

v

‘v GENERAL HOSPITAL

Robert Martin

Medication List Simple List

Task List

22 Feb 1953 Male
Renew by v

beclomethasone HFA  QVAR HFA 2 puffs id 12 Asthma Barnes 19 Feb 2011 [ —— 19 Sep 2013
chlorthalidone 25mg 1 daily 90 Hypertension Barnes 19 Sep 2006 G 19 Sep 2013
insulin glargine Lantus 280 daily 90 11 Diabetes Ballard 19 Nov 2012 - 19 Sep 2013
metformin 1000 mg 1 bid 180 Diabetes Barnes 4 Mar 2008 T 19 Sep 2013
naproxen Aleve 500 mg 1 bid 90 Rheumatoid arthritis  Barnes 4 Mar 2008 cossEEEE——— 19 Sep 2013
prednisone 20 mg 2d x5d prn 84 Asthma Barnes 12 Sep 2010 o 19 Sep 2013
zolpidem 5m 1hs 90 Insomnia Barnes 15 Mar 2012 CEE——— 22 Sep 2013
simvastatin 40 mg 1 daily 84 High cholesterol Belden 19 Mar 2010 cETTEE—— 30 Sep 2013
terbinafine 250 mg 1 daily 84 Onychomycosis Foote 30 Jul 2013 L] 19 Oct 2013
11/6/19 Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 36




Clinical Validation: Key ldea

Question: Is it a good idea to prescribe a particular
combination of drugs to a particular patient?

= E.9., Prediction: {#,¢} cause nausea as a side effect

— No anti-nausea med
Patient 1

No anti-nausea med

- — Patient 3 put on an
anti-nausea med
Patient 3 .
Time t

NEWTON-WELLESLEY =W MASSACHUSETTS 413 Stanford
HOSPITAL Ny GENERAL HOSPITAL & MEDICINE
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loday’s lalk

V./ Representation learning for
biomedical data

2. Three research applications:

Used new approach to predict safety and
side effects of drug combinations

Used new approach to repurpose old
drugs for new diseases

= Used new approach to answer logical
queries on knowledge graphs



New tricks
for old drugs

Goal: Find which diseases a drug (new
molecule) could treat

Drug discovery Preclinical Phase | Phase lll FDA
testing Phase Il approval
3-6 years 3 years 3 years 2 years 1-2 years

12-16 years, ~$1 billion to $2 billion

A SI'"]HTER "MESBM.E Drug repositioning
Because most repositioned drugs have already passed the early
phases of development and clinical testing, they can potentially win

approval in less than half the time and at one-quarter of the cost. ~6 years, ~$300 million
Nature 2016
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What drug treats what disease”

Drugs Diseases

&

Goal: Predict what diseases
a new molecule m|ght treat

o?ﬁﬂ

— “Treats” relatlonshlp

? | Unknown drug-disease relationship

Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka




Key Insight: Subgraphs

Disease: Subgraph of rich Drug: Subgraph of rich
protein network defined on — protein network defined
disease proteins on drug’s target proteins

A drug likely treats a disease if it is close to the
disease in pharmacological space [Paolini et al.,
Nature Biotech.’06; Menche et al., Science’15]

Idea: Use the paradigm of embeddings to operationalize

the concept of closeness in pharmacological space

11/6/19 Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 41




Predicting Links Between Drug

and Disease Subgraphs

Task: Given drug € and disease D, predict if C treats D

6iseases

Drugs\

\

Our method

6iseases

(SUGAR)

\

Marinka Zitnik - Stanford University - http://ai.stanford.edu/~m
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We need drug repurposing dataset

= Protein-protein interaction network culled from 15

1 - N1 7/ NIr— N\ 7z

. : . Protein interaction network |
= Side Information on arugs; : —STC

= Molecular pathways, disease symptoms, side effects




Q\ Predictive Performance

Task: Given a disease and a drug,
/ predict if the drug could treat the disease
Approach

AUPRC AUROC
Our method (SUGAR) 0.851 0.888
Graphlets [Bioinformatics’13]
PREdicting Drug IndiCaTions [Mol. Sys. Biol.'11] Up to 49%
Bi-directional random walks [Bioinformatics’16] improvement

Heterogeneous graph inference [Bioinformatics’14]

Drug-disease closeness [Nat. Commun.17]
Drug-disease dispersion [Nat. Commun.17]
Gene-based network overlap [Nat. Commun.17]

Up to 172%
iIimprovement

Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka



Feedbacks for the Al Loop

Ef;:t'” Will Benzamil
. 4 lreat psoriasis?

convolutional model

biomedical network

o\
\
Shoom

% /" Disease

' embedding Oﬁ
o Q
I —>

G-}
/ Drug
embedding

/a—.—H'etero eneous b. Deep graph c. Predictions

—
Psoriasis

Ebselen p =0.96
Bestatin p=0.84
Benzamil p=0.76
Sirolimus  p=0.54

What data can explain
mmmm—=p> | these predictions? o7

Drug Disease O Protein “Olfactory signaling”  “Innate immune Expert
Molecul h D ide eff pathways response” pathways P
olecular pathway rug side effect panel
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Feedbacks for the Al Loop

Sf;;i'n Will Benzamil
treat psoriasis?

[ OTA]

m'eterogeneous b. Deep graph P c. Predictions
biomedical network convolutional model -
%o ol e
:~ -o-ofm—) -o* ™ Disease
* embedding QQ
Jotm | - Ly er p =0.96
Bestatil p=0.84
~m °-| Benzamil p=0.76
% » r us p=0.54
-0 oo o :f]-
2 : ¥ Drug
X . .-! ! ambadding =
What data can explain 1/
T NIRA
these predictions? [oT4)
. W %A
Drug Disease () Protein “Olfactory signaling Innatenlmmune Expert mm
pathways response” pathways WA m’r’.n
Molecular pathway Drug side effect pane| mm
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Explaining Machine Predictions
Key idea: : )

»
= Summarize where in the data the model “looks” for ™

evidence for its prediction
= Find a small subgraph most influential for the prediction

GNN model training and predictions Explaning GNN'’s predictions

A{\ “Basketbal’ .
'Y G A v~ 4 B

U; = “Basketball” y; = “Sailing”

...................

GNNEXxplainer

“Sailing” Q’\’\IJ\:\

Approach to generate explanations
using counterfactual reasoning

11/6/19 GNN Explainer: Generating Explanations. forGsapheusal Nefwarks, NeurlPS 2019 (to appear) o



GNNExplainer: Key ldea

= |nput: Given prediction f(x) for node/link x

= Qutput: Explanation, a small subgraph M, together
with a small subset of node features:
= M, is most influential for prediction f(x)

= Approach: Learn M, via counterfactual reasoning

= |ntuition: If removing v from
the graph strongly
decreases the probability of
prediction = v is a good
counterfactual explanation
for the prediction

Node feature Feature excluded
vector from explanation

GNN Explainer: Generating \zxplanations fon GranhMNetral Networks, NeurlPS 2019 (to appear)



GNNExplainer: Results

"Why did you predict that this molecule will have a
mutagenic effect on Gram-negative bacterium S.
typhimurium?”

Explanation

Input GNN EXPLAINER
@

o

Input GNN EXPLAINER
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. Representation learning for
biomedical data
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2. Three research applications:

Used new approach to predict safety and
side effects of drug combinations

N

Used new approach to repurpose old
drugs for new diseases

N

Used new approach to answer logical
queries on knowledge graphs




Knowledge Graphs

Query: Predict drugs that might
treat diseases, which are linked
to mutations in protein X

Transcription

Part of

85 Metabolites
%.\(\ -
Phosphorylate - »:eﬁ A T\
Aceylation 2 ’e’%\)\'a ’
Dissociation e X 2 E. ’oaf
Degradation Association L’ \’ fO/o
Stability L \
Localizes ’ \
- Binds o
\ Co-occur Association . Association
Regulates y P Co-express [T 7T > Disease <------~ A :
Expression > _ .7 Co-localize .
T ' .
I ~, - 1
. o Association
Linked with 1 S
1 |
Symptoms
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| earn over Knowledge Graphs

Simple edge prediction Answering logical queries
Predict drugs €, that treat disease d Predict drugs €, that might TARGET
proteins, which are in turn ASSOCiated
C> : TREAT(C»,d) with diseases d, and d,

C.3P : Assoc(dy, P) A AssOC(da, P) A TARGET (P, C?)

Gy dq

MRy,
C3 d2 _ — \ i

11/6/19 Embedding Lipgical.Rueries Qnshowledas.Hrarhs.NeurlPS 2018 52



Why Is query prediction or
knowledge graphs a hard problem?

Logical query
' ' Predict drugs C, that might TARGET
1 ) MaSSIVe enumeratlons proteins, which are in turn ASSOCiated
= E.g., the protein node is an with diseases d; and d,
eXiStentia”y quaﬂtified variable C».3P : assoc(dy, P) A Assoc(dy, P) A TARGET(P, C+)
= Need to enumerate over all d
possible protein nodes P C
d1
1) Exponential computations
= Combinatorial number of R c1
possible answers to the query di o
. ' 5, 73(’/;.'~.
= Naive enumeration approach has &S "t B
exponential time complexity in
the number of query variables B,
dz_‘;q'éoc/v \c*
)

Embedding Lpgicalugries Q. knawledas. Grarhs.NeurlPS 2018



Approach: Query Embeddings

Two key steps:

C7.3P : TARGET(C?7, P) A ASSOC(P, d2) N\ ASSOC(P, d>)

1) Generate an embedding for every
node in the graph

?2) Represent logical operators as
learned geometric operations
(e.q., translation, rotation) in this
embedding space

= Any conjunctive query: Can predict
which nodes are likely to satisfy any query,
even if it involves unobserved edges

= Efficient: Linear time complexity in size of
the query and constant in size of the
knowledge graph

Input query
Query DAG
Nearest neighbor lookup
to finds nodes that
satisfy the query

- Projector

Zq, ..., Operator

A, P

TV

. P o .
Zdy e, 4 Intersection

*e operator

Operations in an embedding space

1/6/19 Embedding LpgicakRueries ansnowledas.Grarhs.NeurlPS 2018 54



Query Embeddings: Results

interacts_through_X_with Data : B | Om ed |Ca| kn O\Nl ed ge g rap h
7 interaction types X: _l/
- physical binding
- co-expression - -
- catalysis Protein is_associated_with Disease ?222?52222/3’);2 fé m
- activation n = 17467 n = 14080

- inhibition, etc. - reproductive system

— - cognition
- malignant neoplasm
- sleep disorder, eftc.
interacts_through_X_with
has_function targets treats
is_a A

Results: Performance on complex
Process side effect| QUErIES IS very strong, with long paths
n = 44639 n=10184 . o

being the most difficult tvoe of auerv

_/\
Results: Ablated models that are only
trained on edge prediction perform
much worse than query embeddings

/619 Embedding Lpgicalugries Q. knawledas. Grarhs.NeurlPS 2018 55
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Summary of Results

Used new approach to predict safety and side
effects of drug combinations:

= First-ever systematic and predictive study of drug combinations
= Follow-up research on prostate cancer and validations in the clinic

Used new approach to repurpose old drugs for
new diseases:

= Qutperforms baselines by up to 172%
= Correctly predicted drugs repurposed at Stanford SPARK

Used new approach to answer logical queries on
knowledge graphs:

= Predict drugs that might treat diseases linked to mutations in protein X
= Ability to answer logical queries in a linear instead of exponential time

Marinka Zitnik - Stanford University - http://ai.stanford .edu/~marinka



Large datasets are transforming science and medicine

New machine learning methods can unlock these
datasets and open doors for scientific discoveries

Data + ML/AI

Predictions
and insights
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Thank you!

Papers, tutorials, data & code
al.stanford.edu/~marinka

2 HARVARD

ES UNIVERSITY

| am hiring outstanding postdocs for projects in
machine learning and biomedical data!




