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Biology is interconnected

3Graph Representation Learning for Biomedicine, Nature Biomedical Engineering (in press), 2022, arXiv:2104.04883

The effects of drugs are not limited to the 
molecules to which they directly bind in the 
body. Instead, these effects spread throughout 
biological networks in which they act. 
Therefore, the effect of a drug on a disease is 
inherently a network phenomenon
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Graph 
representation 

learning
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Cellular components associated with a specific disease 
(phenotype) show a tendency to cluster in the same 

network neighborhood

Deep graph representation learning methods are well-
suited for the analysis of biological networks

Graph representation learning realizes key 
network principles for data-rich biomedicine



This Tutorial
1. Methods: Network diffusion, shallow 

network embeddings, graph neural 
networks, equivariant neural networks

2. Applications: Fundamental biological 
discoveries and precision medicine

3. Hands-on exercises: Demos, 
implementation details, tools, and tips
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DISEASES
Applications of graph representation learning on…
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1. Single-cell transcriptomics data
2. Spatial transcriptomics data
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1. Single-cell transcriptomics data
2. Spatial transcriptomics data



Cross-tissue human cell atlases
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The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans, Science, 2022.

1. Which cell types are 
disease genes active?

2. How does a disease gene’s 
expression vary within the 
same cell type? Across cell 
types?



Limitations of existing methods
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scRNA-seq pipelines studying genetics & disease

Filtering, normalizing, 
and clustering

Differential gene expression 
(DGE) analysis

Ce
lls

Gene

Limitations of using differential gene expression (DGE)
§ DGE is not necessarily associated with disease or cell state
§ The “most differentially” expressed genes do not yield causal structure 
§ Most DGE methods don’t allow for interactions between features

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Leveraging cell-cell interactions
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Ce
lls

Gene

Identify cells from transcriptome Create cell graph Leverage neural message passing

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Identify cells from transcriptome Create cell graph Leverage neural message passing

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Leveraging cell-cell interactions
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Ce
lls

Gene

Identify cells from transcriptome Create cell graph Leverage neural message passing

Attention

Which cell-cell interactions contribute the 
most/least to a specific disease state?

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.

Model

Attention



Experimental Setup
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Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Results
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Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.

§ Transductive task: Randomly assign 10% 
nodes for validation & 10% for testing
§ Keeping ratio of healthy & MS cells 

same as in full dataset
§ Inductive task: Randomly choose a 

healthy adult & MS patient
§ Train on remaining 5 MS patients 

and 4 healthy adults



Results
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Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.

Aggregating predicted probabilities shows cell 
types important for predicting disease state

Variance of a patient’s cells’ probability of being 
in an MS state may indicate timing of flare-up

Predicted probabilities from induction task per cell



Per k head, 
§ Interleukin-2 receptor subunit 

(IL2RG) among top 10 predictive 
features per head

§ Marker for therapeutically targeted 
B cells (CD19) also among top 
features

§ Top predictive features regulate 
hormone secretion, nerve cell 
development, and lipid metabolism, 
suggesting relevant but novel hits 

Results
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Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Key Takeaways
§ Cell graphs enable modeling of cell-cell interactions

§ Typically not considered in standard scRNA-seq pipelines 
studying disease

§ GAT outperforms classic models as well as related GNNs 
(without attention mechanism) in predicting disease state 
from a transcriptome
§ Aggregating predicted probabilities shows cell types important 

for predicting disease state
§ Variance of a patient’s cells’ probability of being in an MS state 

may indicate timing of flare-up
§ Top predictive features regulate may be candidates for 

therapeutic targets 

§ Resources
§ Paper: dl.acm.org/doi/10.1145/3368555.3384449
§ GitHub: github.com/vandijklab/scGAT
§ Follow-up work on COVID-19: arxiv.org/abs/2007.04777
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1. Single-cell transcriptomics data
2. Spatial transcriptomics data



Motivation
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Organ A

Organ B

Organ C

Interact

Spatial distance

1. Leverage higher-
order interactions 
between cells

2. Utilize both gene 
expression & cellular 
organization

3. Overcome 
incomplete spatial 
relationships



Overview

21

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020.



Experimental setup
SeqFISH+
§ Mouse cortex tissue
§ Expression data: 10,000 genes 

in 913 cells
§ Labeled ligand-receptor pairs: 

1056 known interactions 
between 309 ligands and 481 
receptors 
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MERFISH 
§ Cells (in vitro)
§ Expression data: 10,050 genes 

from 1368 cells
§ Labeled ligand-receptor pairs: 

841 known interactions between 
270 ligands and 376 receptors

GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020.



Results: Inferring L-R interaction
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GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020.

§ Single cell Pearson correlation (PC): Pearson correlation between the expression of 
ligands and receptors within each cell

§ Giotto: Calculate similarity score for all pairs of genes in all pairs of neighboring cell 
types à Rank pairs based on average score

§ Spatial PC: PC between ligand and receptors in neighboring cells
§ Diagonal GCNG: Only uses a diagonal matrix to represent the graph à Only autocrine 

interactions are possible
§ Exocrine GCNG: Only exocrine interaction between cells are allowed
§ Autocrine+ GCNG: Both autocrine and exocrine interactions



Results: Functional prediction
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GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020.



Key Takeaways
§ GCNG

§ Encodes the spatial information as a graph
§ Combines the spatial cell neighborhood graph with expression data 

using supervised learning
– Unlike standard approaches, which rely on unsupervised correlation-

based analysis
§ Can propose novel pairs of extracellular interacting genes
§ Outputs can be used for downstream analysis, including functional 

assignment
§ Resources

§ Paper: genomebiology.biomedcentral.com/articles/10.1186/s13059-
020-02214-w

§ GitHub: github.com/xiaoyeye/GCNG
§ Relevant papers:

– Wang et al. Nature Communications (2021) scGNN is a novel graph 
neural network framework for single-cell RNA-seq analysis

– Ding and Regev, Nature Communications (2021). Deep generative 
model embedding of single-cell RNA-seq profiles on hyperspheres 
and hyperbolic spaces
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https://www.nature.com/articles/s41467-021-22197-x
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Graph RL for diseases
Summary

§ Single cell GAT: Model cellular interactions to learn disease 
state of cells while identifying (via attention mechanism) the 
cell types and biomarkers that contributed most to disease

§ Spatial transcriptomics: Construct a spatial cell 
neighborhood graph and combine with expression data to 
model cellular interactions with gene- to tissue-level 
organization

Poll Question
What diseases might the use of graph representation learning 

on single-cell/spatial transcriptomics data be the MOST or 
LEAST impactful for? Fill in the blank

Q&A Session
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THERAPEUTICS
Applications of graph representation learning on…

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022 27

1. Molecular property prediction, drug-target interaction 
prediction, molecular generation

2. Drug discovery
3. Drug repurposing



Step 1: Design and 
Discovery

Step 2: Preclinical 
Research

Step 3: Clinical 
Research

Step 4: FDA 
Review

Step 5: Post-Market and
Safety Monitoring
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1. Molecular property prediction, drug-target interaction 
prediction, molecular generation

2. Drug discovery
3. Drug repurposing
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30

Compelling applications of 
graph RL
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Model
Absorption
Distribution
Metabolism
Excretion
Toxicity

Endpointse.g.
Fingerprints

CNN+SMILES
GNN
….
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ADMET property prediction
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22 datasets with ADMET endpoints
Absorption
Caco2 (Cell Permeability)
HIA (Intestinal Absorption)
Pgp (P-glycoprotein)
Bioavailability
Lipophilicity
Solubility

Distribution
BBB (Blood-Brain Barrier)
PPBR (Plasma Protein Binding)
VDss (Volume of Distribution)
Metabolism
CYP2C9/2D6/3A4 Inhibition
CYP2C9/2D6/3A4 Substrate

Excretion
Half Life
Clearance (Hepatocyte)
Clearance (Microsome)

Toxicity
LD50 (Acute Toxicity)
hERG blocker
Ames Mutagenicity
Drug Induced Liver Injury

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Datasets



33

Table 1: Leaderboard on the TDC ADMET Benchmark Group. Average and standard deviation across five runs are reported. Arrows (", #)
indicate the direction of better performance. The best method is bolded and the second best is underlined.

Raw Feature Type Expert-Curated Methods SMILES Molecular Graph-Based Methods (state-of-the-Art in ML)

Dataset Metric Morgan [31] RDKit2D [24] CNN [18] NeuralFP [7] GCN [23] AttentiveFP [43] AttrMasking [16] ContextPred [16]

# Params. 1477K 633K 227K 480K 192K 301K 2067K 2067K

TDC.Caco2 (#) MAE 0.908±0.060 0.393±0.024 0.446±0.036 0.530±0.102 0.599±0.104 0.401±0.032 0.546±0.052 0.502±0.036
TDC.HIA (") AUROC 0.807±0.072 0.972±0.008 0.869±0.026 0.943±0.014 0.936±0.024 0.974±0.007 0.978±0.006 0.975±0.004
TDC.Pgp (") AUROC 0.880±0.006 0.918±0.007 0.908±0.012 0.902±0.020 0.895±0.021 0.892±0.012 0.929±0.006 0.923±0.005
TDC.Bioav (") AUROC 0.581±0.086 0.672±0.021 0.613±0.013 0.632±0.036 0.566±0.115 0.632±0.039 0.577±0.087 0.671±0.026
TDC.Lipo (#) MAE 0.701±0.009 0.574±0.017 0.743±0.020 0.563±0.023 0.541±0.011 0.572±0.007 0.547±0.024 0.535±0.012

TDC.AqSol (#) MAE 1.203±0.019 0.827±0.047 1.023±0.023 0.947±0.016 0.907±0.020 0.776±0.008 1.026±0.020 1.040±0.045

TDC.BBB (") AUROC 0.823±0.015 0.889±0.016 0.781±0.030 0.836±0.009 0.842±0.016 0.855±0.011 0.892±0.012 0.897±0.004

TDC.PPBR (#) MAE 12.848±0.362 9.994±0.319 11.106±0.358 9.292±0.384 10.194±0.373 9.373±0.335 10.075±0.202 9.445±0.224
TDC.VD (") Spearman 0.493±0.011 0.561±0.025 0.226±0.114 0.258±0.162 0.457±0.050 0.241±0.145 0.559±0.019 0.485±0.092

TDC.CYP2D6-I (") AUPRC 0.587±0.011 0.616±0.007 0.544±0.053 0.627±0.009 0.616±0.020 0.646±0.014 0.721±0.009 0.739±0.005

TDC.CYP3A4-I (") AUPRC 0.827±0.009 0.829±0.007 0.821±0.003 0.849±0.004 0.840±0.010 0.851±0.006 0.902±0.002 0.904±0.002

TDC.CYP2C9-I (") AUPRC 0.715±0.004 0.742±0.006 0.713±0.006 0.739±0.010 0.735±0.004 0.749±0.004 0.829±0.003 0.839±0.003

TDC.CYP2D6-S (") AUPRC 0.671±0.066 0.677±0.047 0.485±0.037 0.572±0.062 0.617±0.039 0.574±0.030 0.704±0.028 0.736±0.024

TDC.CYP3A4-S (") AUROC 0.633±0.013 0.639±0.012 0.662±0.031 0.578±0.020 0.590±0.023 0.576±0.025 0.582±0.021 0.609±0.025
TDC.CYP2C9-S (") AUPRC 0.380±0.015 0.360±0.040 0.367±0.059 0.359±0.059 0.344±0.051 0.375±0.032 0.381±0.045 0.392±0.026

TDC.Half_Life (") Spearman 0.329±0.083 0.184±0.111 0.038±0.138 0.177±0.165 0.239±0.100 0.085±0.068 0.151±0.068 0.129±0.114
TDC.CL-Micro (") Spearman 0.492±0.020 0.586±0.014 0.252±0.116 0.529±0.015 0.532±0.033 0.365±0.055 0.585±0.034 0.578±0.007
TDC.CL-Hepa (") Spearman 0.272±0.068 0.382±0.007 0.235±0.021 0.401±0.037 0.366±0.063 0.289±0.022 0.413±0.028 0.439±0.026

TDC.hERG (") AUROC 0.736±0.023 0.841±0.020 0.754±0.037 0.722±0.034 0.738±0.038 0.825±0.007 0.778±0.046 0.756±0.023
TDC.AMES (") AUROC 0.794±0.008 0.823±0.011 0.776±0.015 0.823±0.006 0.818±0.010 0.814±0.008 0.842±0.008 0.837±0.009
TDC.DILI (") AUROC 0.832±0.021 0.875±0.019 0.792±0.016 0.851±0.026 0.859±0.033 0.886±0.015 0.919±0.008 0.861±0.018
TDC.LD50 (#) MAE 0.649±0.019 0.678±0.003 0.675±0.011 0.667±0.020 0.649±0.026 0.678±0.012 0.685±0.025 0.669±0.030

2 TDC Molecular Machine Learning Benchmarks

2.1 ADMET Benchmark Group for Molecular Regression and Classification

Motivation. A small-molecule drug needs to travel from the site of administration (e.g., oral) to the
site of action (e.g., a tissue) and then decomposes, exits the body. Therefore, the chemical is required
to have numerous ideal absorption, distribution, metabolism, excretion, and toxicity (ADMET)
properties [38]. An early and accurate ADMET profiling during the discovery stage is an essential
condition for the successful development of a small-molecule candidate.

Experimental setup. We leverage 22 ADMET datasets included in TDC that include endpoints
widely used in the pharmaceutical companies. In real-world discovery, the drug structures of interest
evolve. Thus, we adopt scaffold split to simulate this distant effect. Data are split into 7:1:2
train:validation:test where train and validation set are shuffled five times to create five random
runs. We use AUROC and AUPRC for binary classification, MAE and Spearman correlation for
regression task. For baselines, we use Morgan fingerprint [31], RDKit2D [24], CNN on SMILES
strings [18], NeuralFP [7], GCN [23], AttentiveFP [43], and two GNNs pretrained with AttMasking
and ContextPred. Details can be found in Appendix A.

Results. Results are shown in Table 1. Overall, we find that pretraining GIN (Graph Isomorphism
Network) [44] with context prediction has the best performances in 8 endpoints, attribute masking
has the best ones in 5 endpoints. Expert-curated descriptor RDKit2D also has five endpoints that
achieve the best results, while SMILES-based CNN has one best-performing one. Our systematic
evaluation yield three key findings. First, the ML SOTA models do not work well consistently for
these novel realistic endpoints. In some cases, methods based on learned features are worse than
the efficient domain features. This gap highlights the necessity for realistic benchmarking. Second,
performances vary across feature types given different endpoints. For example, in TDC.CYP3A4-

S, the SMILES-based CNN is 8.7%-14.9% better than the graph-based methods. Third, the best
performing methods use pretraining strategies, highlighting an exciting avenue in recent advances in
self-supervised learning to the biomedical setting.

2.2 Drug-target Interaction Benchmark for Molecular Interaction Prediction

Motivation. Drug-target interactions (DTI) characterize the binding of compounds to disease targets.
Recent ML models have shown strong performances in DTI prediction [18], but they adopt a random
dataset splitting that cannot evaluate the performance of the models on novel targets or a novel class
of compounds for known targets. As compounds and targets shift over the years, it requires a DTI ML
model to achieve consistent performances to the subtle domain shifts along the temporal dimension.

Experimental setup. We use DTIs in TDC.BindingDB that have patent information. Specifically,
we formulate each domain consisting of DTIs that are patented in a specific year. We test various
domain generalization methods to predict out-of-distribution DTIs in 2019-2021 after training on
2013-2018 DTIs, simulating the realistic scenario. We use the popular deep learning based DTI
model DeepDTA [27] as the backbone of any domain generalization algorithms. The evaluation
metric is pearson correlation coefficient (PCC). Validation set selection is crucial for a fair domain

2

• Finding 1: No single method has the best 
performance across all scenarios
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Results: ADMET prediction (1/3)
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Table 1: Leaderboard on the TDC ADMET Benchmark Group. Average and standard deviation across five runs are reported. Arrows (", #)
indicate the direction of better performance. The best method is bolded and the second best is underlined.

Raw Feature Type Expert-Curated Methods SMILES Molecular Graph-Based Methods (state-of-the-Art in ML)

Dataset Metric Morgan [31] RDKit2D [24] CNN [18] NeuralFP [7] GCN [23] AttentiveFP [43] AttrMasking [16] ContextPred [16]

# Params. 1477K 633K 227K 480K 192K 301K 2067K 2067K

TDC.Caco2 (#) MAE 0.908±0.060 0.393±0.024 0.446±0.036 0.530±0.102 0.599±0.104 0.401±0.032 0.546±0.052 0.502±0.036
TDC.HIA (") AUROC 0.807±0.072 0.972±0.008 0.869±0.026 0.943±0.014 0.936±0.024 0.974±0.007 0.978±0.006 0.975±0.004
TDC.Pgp (") AUROC 0.880±0.006 0.918±0.007 0.908±0.012 0.902±0.020 0.895±0.021 0.892±0.012 0.929±0.006 0.923±0.005
TDC.Bioav (") AUROC 0.581±0.086 0.672±0.021 0.613±0.013 0.632±0.036 0.566±0.115 0.632±0.039 0.577±0.087 0.671±0.026
TDC.Lipo (#) MAE 0.701±0.009 0.574±0.017 0.743±0.020 0.563±0.023 0.541±0.011 0.572±0.007 0.547±0.024 0.535±0.012

TDC.AqSol (#) MAE 1.203±0.019 0.827±0.047 1.023±0.023 0.947±0.016 0.907±0.020 0.776±0.008 1.026±0.020 1.040±0.045

TDC.BBB (") AUROC 0.823±0.015 0.889±0.016 0.781±0.030 0.836±0.009 0.842±0.016 0.855±0.011 0.892±0.012 0.897±0.004

TDC.PPBR (#) MAE 12.848±0.362 9.994±0.319 11.106±0.358 9.292±0.384 10.194±0.373 9.373±0.335 10.075±0.202 9.445±0.224
TDC.VD (") Spearman 0.493±0.011 0.561±0.025 0.226±0.114 0.258±0.162 0.457±0.050 0.241±0.145 0.559±0.019 0.485±0.092

TDC.CYP2D6-I (") AUPRC 0.587±0.011 0.616±0.007 0.544±0.053 0.627±0.009 0.616±0.020 0.646±0.014 0.721±0.009 0.739±0.005

TDC.CYP3A4-I (") AUPRC 0.827±0.009 0.829±0.007 0.821±0.003 0.849±0.004 0.840±0.010 0.851±0.006 0.902±0.002 0.904±0.002

TDC.CYP2C9-I (") AUPRC 0.715±0.004 0.742±0.006 0.713±0.006 0.739±0.010 0.735±0.004 0.749±0.004 0.829±0.003 0.839±0.003

TDC.CYP2D6-S (") AUPRC 0.671±0.066 0.677±0.047 0.485±0.037 0.572±0.062 0.617±0.039 0.574±0.030 0.704±0.028 0.736±0.024

TDC.CYP3A4-S (") AUROC 0.633±0.013 0.639±0.012 0.662±0.031 0.578±0.020 0.590±0.023 0.576±0.025 0.582±0.021 0.609±0.025
TDC.CYP2C9-S (") AUPRC 0.380±0.015 0.360±0.040 0.367±0.059 0.359±0.059 0.344±0.051 0.375±0.032 0.381±0.045 0.392±0.026

TDC.Half_Life (") Spearman 0.329±0.083 0.184±0.111 0.038±0.138 0.177±0.165 0.239±0.100 0.085±0.068 0.151±0.068 0.129±0.114
TDC.CL-Micro (") Spearman 0.492±0.020 0.586±0.014 0.252±0.116 0.529±0.015 0.532±0.033 0.365±0.055 0.585±0.034 0.578±0.007
TDC.CL-Hepa (") Spearman 0.272±0.068 0.382±0.007 0.235±0.021 0.401±0.037 0.366±0.063 0.289±0.022 0.413±0.028 0.439±0.026

TDC.hERG (") AUROC 0.736±0.023 0.841±0.020 0.754±0.037 0.722±0.034 0.738±0.038 0.825±0.007 0.778±0.046 0.756±0.023
TDC.AMES (") AUROC 0.794±0.008 0.823±0.011 0.776±0.015 0.823±0.006 0.818±0.010 0.814±0.008 0.842±0.008 0.837±0.009
TDC.DILI (") AUROC 0.832±0.021 0.875±0.019 0.792±0.016 0.851±0.026 0.859±0.033 0.886±0.015 0.919±0.008 0.861±0.018
TDC.LD50 (#) MAE 0.649±0.019 0.678±0.003 0.675±0.011 0.667±0.020 0.649±0.026 0.678±0.012 0.685±0.025 0.669±0.030

2 TDC Molecular Machine Learning Benchmarks

2.1 ADMET Benchmark Group for Molecular Regression and Classification

Motivation. A small-molecule drug needs to travel from the site of administration (e.g., oral) to the
site of action (e.g., a tissue) and then decomposes, exits the body. Therefore, the chemical is required
to have numerous ideal absorption, distribution, metabolism, excretion, and toxicity (ADMET)
properties [38]. An early and accurate ADMET profiling during the discovery stage is an essential
condition for the successful development of a small-molecule candidate.

Experimental setup. We leverage 22 ADMET datasets included in TDC that include endpoints
widely used in the pharmaceutical companies. In real-world discovery, the drug structures of interest
evolve. Thus, we adopt scaffold split to simulate this distant effect. Data are split into 7:1:2
train:validation:test where train and validation set are shuffled five times to create five random
runs. We use AUROC and AUPRC for binary classification, MAE and Spearman correlation for
regression task. For baselines, we use Morgan fingerprint [31], RDKit2D [24], CNN on SMILES
strings [18], NeuralFP [7], GCN [23], AttentiveFP [43], and two GNNs pretrained with AttMasking
and ContextPred. Details can be found in Appendix A.

Results. Results are shown in Table 1. Overall, we find that pretraining GIN (Graph Isomorphism
Network) [44] with context prediction has the best performances in 8 endpoints, attribute masking
has the best ones in 5 endpoints. Expert-curated descriptor RDKit2D also has five endpoints that
achieve the best results, while SMILES-based CNN has one best-performing one. Our systematic
evaluation yield three key findings. First, the ML SOTA models do not work well consistently for
these novel realistic endpoints. In some cases, methods based on learned features are worse than
the efficient domain features. This gap highlights the necessity for realistic benchmarking. Second,
performances vary across feature types given different endpoints. For example, in TDC.CYP3A4-

S, the SMILES-based CNN is 8.7%-14.9% better than the graph-based methods. Third, the best
performing methods use pretraining strategies, highlighting an exciting avenue in recent advances in
self-supervised learning to the biomedical setting.

2.2 Drug-target Interaction Benchmark for Molecular Interaction Prediction

Motivation. Drug-target interactions (DTI) characterize the binding of compounds to disease targets.
Recent ML models have shown strong performances in DTI prediction [18], but they adopt a random
dataset splitting that cannot evaluate the performance of the models on novel targets or a novel class
of compounds for known targets. As compounds and targets shift over the years, it requires a DTI ML
model to achieve consistent performances to the subtle domain shifts along the temporal dimension.

Experimental setup. We use DTIs in TDC.BindingDB that have patent information. Specifically,
we formulate each domain consisting of DTIs that are patented in a specific year. We test various
domain generalization methods to predict out-of-distribution DTIs in 2019-2021 after training on
2013-2018 DTIs, simulating the realistic scenario. We use the popular deep learning based DTI
model DeepDTA [27] as the backbone of any domain generalization algorithms. The evaluation
metric is pearson correlation coefficient (PCC). Validation set selection is crucial for a fair domain
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Results: ADMET prediction (2/3)

• Finding 2: Expert-curated methods, such as 
Morgan’s fingerprints can outperform graph RL 
methods on some endpoints
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Table 1: Leaderboard on the TDC ADMET Benchmark Group. Average and standard deviation across five runs are reported. Arrows (", #)
indicate the direction of better performance. The best method is bolded and the second best is underlined.

Raw Feature Type Expert-Curated Methods SMILES Molecular Graph-Based Methods (state-of-the-Art in ML)

Dataset Metric Morgan [31] RDKit2D [24] CNN [18] NeuralFP [7] GCN [23] AttentiveFP [43] AttrMasking [16] ContextPred [16]

# Params. 1477K 633K 227K 480K 192K 301K 2067K 2067K

TDC.Caco2 (#) MAE 0.908±0.060 0.393±0.024 0.446±0.036 0.530±0.102 0.599±0.104 0.401±0.032 0.546±0.052 0.502±0.036
TDC.HIA (") AUROC 0.807±0.072 0.972±0.008 0.869±0.026 0.943±0.014 0.936±0.024 0.974±0.007 0.978±0.006 0.975±0.004
TDC.Pgp (") AUROC 0.880±0.006 0.918±0.007 0.908±0.012 0.902±0.020 0.895±0.021 0.892±0.012 0.929±0.006 0.923±0.005
TDC.Bioav (") AUROC 0.581±0.086 0.672±0.021 0.613±0.013 0.632±0.036 0.566±0.115 0.632±0.039 0.577±0.087 0.671±0.026
TDC.Lipo (#) MAE 0.701±0.009 0.574±0.017 0.743±0.020 0.563±0.023 0.541±0.011 0.572±0.007 0.547±0.024 0.535±0.012

TDC.AqSol (#) MAE 1.203±0.019 0.827±0.047 1.023±0.023 0.947±0.016 0.907±0.020 0.776±0.008 1.026±0.020 1.040±0.045

TDC.BBB (") AUROC 0.823±0.015 0.889±0.016 0.781±0.030 0.836±0.009 0.842±0.016 0.855±0.011 0.892±0.012 0.897±0.004

TDC.PPBR (#) MAE 12.848±0.362 9.994±0.319 11.106±0.358 9.292±0.384 10.194±0.373 9.373±0.335 10.075±0.202 9.445±0.224
TDC.VD (") Spearman 0.493±0.011 0.561±0.025 0.226±0.114 0.258±0.162 0.457±0.050 0.241±0.145 0.559±0.019 0.485±0.092

TDC.CYP2D6-I (") AUPRC 0.587±0.011 0.616±0.007 0.544±0.053 0.627±0.009 0.616±0.020 0.646±0.014 0.721±0.009 0.739±0.005

TDC.CYP3A4-I (") AUPRC 0.827±0.009 0.829±0.007 0.821±0.003 0.849±0.004 0.840±0.010 0.851±0.006 0.902±0.002 0.904±0.002

TDC.CYP2C9-I (") AUPRC 0.715±0.004 0.742±0.006 0.713±0.006 0.739±0.010 0.735±0.004 0.749±0.004 0.829±0.003 0.839±0.003

TDC.CYP2D6-S (") AUPRC 0.671±0.066 0.677±0.047 0.485±0.037 0.572±0.062 0.617±0.039 0.574±0.030 0.704±0.028 0.736±0.024

TDC.CYP3A4-S (") AUROC 0.633±0.013 0.639±0.012 0.662±0.031 0.578±0.020 0.590±0.023 0.576±0.025 0.582±0.021 0.609±0.025
TDC.CYP2C9-S (") AUPRC 0.380±0.015 0.360±0.040 0.367±0.059 0.359±0.059 0.344±0.051 0.375±0.032 0.381±0.045 0.392±0.026

TDC.Half_Life (") Spearman 0.329±0.083 0.184±0.111 0.038±0.138 0.177±0.165 0.239±0.100 0.085±0.068 0.151±0.068 0.129±0.114
TDC.CL-Micro (") Spearman 0.492±0.020 0.586±0.014 0.252±0.116 0.529±0.015 0.532±0.033 0.365±0.055 0.585±0.034 0.578±0.007
TDC.CL-Hepa (") Spearman 0.272±0.068 0.382±0.007 0.235±0.021 0.401±0.037 0.366±0.063 0.289±0.022 0.413±0.028 0.439±0.026

TDC.hERG (") AUROC 0.736±0.023 0.841±0.020 0.754±0.037 0.722±0.034 0.738±0.038 0.825±0.007 0.778±0.046 0.756±0.023
TDC.AMES (") AUROC 0.794±0.008 0.823±0.011 0.776±0.015 0.823±0.006 0.818±0.010 0.814±0.008 0.842±0.008 0.837±0.009
TDC.DILI (") AUROC 0.832±0.021 0.875±0.019 0.792±0.016 0.851±0.026 0.859±0.033 0.886±0.015 0.919±0.008 0.861±0.018
TDC.LD50 (#) MAE 0.649±0.019 0.678±0.003 0.675±0.011 0.667±0.020 0.649±0.026 0.678±0.012 0.685±0.025 0.669±0.030

2 TDC Molecular Machine Learning Benchmarks

2.1 ADMET Benchmark Group for Molecular Regression and Classification

Motivation. A small-molecule drug needs to travel from the site of administration (e.g., oral) to the
site of action (e.g., a tissue) and then decomposes, exits the body. Therefore, the chemical is required
to have numerous ideal absorption, distribution, metabolism, excretion, and toxicity (ADMET)
properties [38]. An early and accurate ADMET profiling during the discovery stage is an essential
condition for the successful development of a small-molecule candidate.

Experimental setup. We leverage 22 ADMET datasets included in TDC that include endpoints
widely used in the pharmaceutical companies. In real-world discovery, the drug structures of interest
evolve. Thus, we adopt scaffold split to simulate this distant effect. Data are split into 7:1:2
train:validation:test where train and validation set are shuffled five times to create five random
runs. We use AUROC and AUPRC for binary classification, MAE and Spearman correlation for
regression task. For baselines, we use Morgan fingerprint [31], RDKit2D [24], CNN on SMILES
strings [18], NeuralFP [7], GCN [23], AttentiveFP [43], and two GNNs pretrained with AttMasking
and ContextPred. Details can be found in Appendix A.

Results. Results are shown in Table 1. Overall, we find that pretraining GIN (Graph Isomorphism
Network) [44] with context prediction has the best performances in 8 endpoints, attribute masking
has the best ones in 5 endpoints. Expert-curated descriptor RDKit2D also has five endpoints that
achieve the best results, while SMILES-based CNN has one best-performing one. Our systematic
evaluation yield three key findings. First, the ML SOTA models do not work well consistently for
these novel realistic endpoints. In some cases, methods based on learned features are worse than
the efficient domain features. This gap highlights the necessity for realistic benchmarking. Second,
performances vary across feature types given different endpoints. For example, in TDC.CYP3A4-

S, the SMILES-based CNN is 8.7%-14.9% better than the graph-based methods. Third, the best
performing methods use pretraining strategies, highlighting an exciting avenue in recent advances in
self-supervised learning to the biomedical setting.

2.2 Drug-target Interaction Benchmark for Molecular Interaction Prediction

Motivation. Drug-target interactions (DTI) characterize the binding of compounds to disease targets.
Recent ML models have shown strong performances in DTI prediction [18], but they adopt a random
dataset splitting that cannot evaluate the performance of the models on novel targets or a novel class
of compounds for known targets. As compounds and targets shift over the years, it requires a DTI ML
model to achieve consistent performances to the subtle domain shifts along the temporal dimension.

Experimental setup. We use DTIs in TDC.BindingDB that have patent information. Specifically,
we formulate each domain consisting of DTIs that are patented in a specific year. We test various
domain generalization methods to predict out-of-distribution DTIs in 2019-2021 after training on
2013-2018 DTIs, simulating the realistic scenario. We use the popular deep learning based DTI
model DeepDTA [27] as the backbone of any domain generalization algorithms. The evaluation
metric is pearson correlation coefficient (PCC). Validation set selection is crucial for a fair domain
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Results: ADMET prediction (3/3)

• Finding 3: Pre-training can be helpful. Pre-trained 
graph RL models yield strongest predictors overall
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Drug-target interaction prediction



37

DTI datasets are typically split into train/validation/test sets in 
a random manner. Identifying drug targets in the real-world, 

however, requires generalization to novel drugs and proteins.

A domain generalization problem!

Train-Valid: DTIs Patented in 2013-18 Test: DTIs Patented in 2019-21

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Setup: Distribution shifts and 
generalization
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In-Distribution Out-of-Distribution

Figure 1: Heatmap visualization of domain generalization methods performance

across each domain in the TDC DTI-DG benchmark using TDC.BindingDB. We
observe a significant gap between the in-distribution and out-of-distribution performance
and highlight the demand for algorithmic innovation.

Table 2: Leaderboard on TDC DTI-DG

benchmark using TDC.BindingDB. In-Dist.

aggregates the in-split validation set and fol-
lows the same data distribution as the training
set (2013-2018). Out-Dist. aggregates the
testing domains (2019-2021). The goal is to
maximize the test domain performance. Re-
ported results include the average and standard
deviation of Pearson Correlation Coefficient
across five random runs. The best method is
bolded and the second best is underlined.

Method In-Dist. Out-Dist.

ERM 0.703±0.005 0.427±0.012

MMD 0.700±0.002 0.433±0.010

CORAL 0.704±0.003 0.432±0.010
IRM 0.420±0.008 0.284±0.021
GroupDRO 0.681±0.010 0.384±0.006
MTL 0.685±0.009 0.425±0.010
ANDMask 0.436±0.014 0.288±0.019

generalization methods comparison. Following the strategy of "Training-domain validation set"
in [13], from the 2013-2018 DTIs, we randomly set 20% of them as the validation set and use them as
the in-distribution performance calculations as they follow the same as the training set and 2018-2021
are only used during testing, which we called out-of-distribution. For baselines, we use ERM [39],
MMD [25], CORAL [37], IRM [2], GroupDRO [33], MTL [3], ANDMask [28]. Details are located
in Appendix A.

Results. Results are shown in Table 2 and Figure 1. We observe that in-distribution reaches 0.7
PCC and are very stable across the years, suggesting the high predictive power of ML models in the
unrealistic but widely adopted ML settings. However, out-of-distribution performance significantly
degrades from 33.9% to 43.6% across methods, suggesting that domain shift exists and realistic
constraint breaks usual training strategies. Second, although the best performed methods are MMD
and CORAL, the standard training strategy has similar performances as current ML SOTA domain
generalization algorithms, which confirms with the systematic study conducted by [13], highlighting
a demand for robust domain generalization methods that are specialized in biomedical problems.

2.3 Docking Benchmarks for Molecule Generation

Motivation. Drug design aims to generate novel molecular structures with desired pharmaceutical
properties. Current generative modeling focus on optimizing simple heuristic oracles, such as QED
(quantitative estimate of drug-likeness) and LogP (Octanol-water partition coefficient) [21, 45, 46],
while an experimental evaluation, such as a bioassay, or a high-fidelity simulation, is more difficult to
optimize and much more costly in terms of resources. Therefore, we leverage docking simulation [26,
5, 35] that evaluates the affinity between a ligand (a small molecular drug) and a target (a protein
involved in the disease) as an oracle and build up benchmark groups. In addition to the objective
function value, we add a quality filter and a synthetic accessibility score to evaluate the generation
quality within a limited number of oracle calls.

Experimental setup. We leverage TDC.ZINC dataset as the molecule library and TDC.Docking

oracle function as the molecule docking score evaluator against the target DRD3, which is a crucial
disease target for neurology diseases such as tremor and schizophrenia. To imitate a low-data scenario,
we limit the number of oracle callings available to four levels: 100, 500, 1000, 5000. In addition,
we investigate additional metrics that evaluate the quality of generated molecules, including (1)
Top100/Top10/Top1: Average docking score of top-100/10/1 molecules; (2) Diversity: average
pairwise Tanimoto distance of Morgan fingerprints for Top 100 molecules; (3) Novelty: fraction of
molecules that are not in the training set; (4) m1: Synthesizability score of molecules obtained via
molecule.one retrosynthesis model [32]; (5) %pass: Fraction of molecules that successfully pass
through apriori defined quality filters; (6) Top1 %pass: The lowest docking score for molecules
that pass the filter. Each model is run three times with different random seeds. For baselines,
we use Screening [26] (simulated as random sampling), Graph-GA [20], string-based LSTM [34],
GCPN [45], MolDQN [46] and MARS [42]. We also include best-in-data, which choose 100
molecules with the highest docking score from ZINC 250K database as reference.
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Results

• Finding 1: OOD (Out-of-distribution) performance drops from 33.9%-43.6%.

• Finding 2: Standard supervised models have similar performance as state-
of-the-art domain generalization methods.

ERM (Empirical Risk Minimization) is a 
standard training strategy where errors 
across all domains are minimized. 

State-of-the-art domain generalization 
methods: MMD (Maximum Mean 
Discrepancy) optimizes similarities between 
predicted and observed values using 
maximum mean discrepancy score across 
domains. CORAL (Correlation Alignment)
matches the mean and covariance of 
features across domains. IRM (Invariant Risk 
Minimization) optimizes features using a 
cross-domain optimized linear classifier. 
GroupDRO (distributionally robust neural 
networks for group shifts) optimizes ERM 
and adjusts weights of domains with larger 
errors. MTL (marginal transfer learning)
concatenates original features with an 
augmented vector of marginal feature 
distributions. ANDMask masks gradients that 
have inconsistent signs in the corresponding 
weights across domains
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Real-world oracles (e.g., bioassays and experimental validation 
of predictions) are expensive and resource-intensive

Molecule generation given a small budget, 
i.e., limited number of oracle calls! 

Docking oraclePrevious oracle

Milliseconds in RDKit
SOTA methods call 

millions of times!

vs

Minutes in Vina
Restricted to thousands 

of calls only!
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Setup: High-capacity oracles (1/2)  
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Optimizing for a single target property is not sufficient. It does 
not generate molecules with many drug-like properties

We need effective indicators of performance of these 
methods in real-world scenarios

Established performance metrics: 
Top100/Top10/Top1 docking scores, Diversity, Novelty

Additional performance metrics: 
Synthesizability with Molecule.One*

% Pass filters (PAINS/SureChEMBL/Glaxo)

*https://molecule.one

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Setup: High-capacity oracles (2/2)  
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Table 3: Leaderboard on TDC DRD3 docking benchmark using TDC.ZINC and TDC.Docking. Mean and standard deviation across three
runs are reported. Arrows (", #) indicate the direction of better performance. The best method is bolded and the second best is underlined.

Method Category Domain-Specific Methods State-of-the-Art Methods in ML

Metric Best-in-data # Calls Screening Graph-GA [20] LSTM [34] GCPN [45] MolDQN [46] MARS [42]

# Params. - - 0 0 3149K 18K 2694K 153K

Top100 (#) -12.080

1000

-9.693±0.019 -11.224±0.484 -9.971±0.115 -9.053±0.080 -6.738±0.042 -8.224±0.196
Top10 (#) -12.590 -10.777±0.189 -12.400±0.782 -11.163±0.141 -11.027±0.273 -7.506±0.085 -9.843±0.068
Top1 (#) -12.800 -11.500±0.432 -13.233±0.713 -11.967±0.205 -12.033±0.618 -7.800±0.042 -11.100±0.141
Diversity (") 0.864 0.873±0.003 0.815±0.046 0.871±0.004 0.913±0.001 0.904±0.001 0.871±0.004
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.757±0.026 0.777±0.096 0.777±0.026 0.170±0.022 0.033±0.005 0.563±0.052
Top1 Pass (#) -11.700 -9.167±0.047 -10.600±0.374 -9.367±0.094 -8.167±0.047 -6.450±0.085 -7.367±0.205
m1 (#) 5.100 5.527±0.780 7.695±0.909 4.818±0.541 10.000±0.000 10.000±0.000 6.037±0.137

Top100 (#) -12.080

5000

-10.542±0.035 -14.811±0.413 -13.017±0.385 -10.045±0.226 -8.236±0.089 -9.509±0.035
Top10 (#) -12.590 -11.483±0.056 -15.930±0.336 -14.030±0.421 -11.483±0.581 -9.348±0.188 -10.693±0.172
Top1 (#) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450
Diversity (") 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087
Top1 Pass (#) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082
m1 (#) 5.100 5.610±0.805 9.669±0.468 5.826±1.908 10.000±0.000 10.000±0.000 7.073±0.798

Results. Results are shown in Table 3 and 4 (Appendix). Overall, we observe that almost all models
cannot perform well under a limited oracle setting. The majority of the methods cannot surpass the
best-in-data docking scores with less than 1,000 allowable oracle callings. In the 5,000 oracle callings
setting, Graph-GA (-14.811) and LSTM (-13.017) finally surpass the best-in-data result. Graph-GA
dominates the leaderboard with 0 learnable parameters in terms of optimization ability, while a simple
SMILES LSTM ranks behind. Other SOTA ML models that reported excellent performances in
unlimited trivial oracles cannot beat virtual screening when allowing less than 5,000 oracle calls.
This result questions the utility of the current ML SOTA methods and calls for a shift of focus on the
current ML molecular generation communities to consider realistic constraints during evaluation.

Additionally, we observed that as the number of allowable oracles calls increases, the more significant
fraction generates unsynthesizable molecular structures despite the increasing affinity, which confirms
with the systematic study conducted by [9]. The best performing Graph GA showed a monotonous
increment in the m1 score when we allow more oracle calls. In the 5,000 calls category, only 2.3% -
52.7% of the generated molecules pass the molecule filters, and within the passed molecules, the best
docking score drops significantly compared to before the filter. The recent synthesizable constrained
generation [12, 4, 11] is a promising approach to tackle this problem. We expect to see more ML
models explicitly considering synthesizability.

3 Conclusion

To facilitate algorithmic and scientific innovation in therapeutics, we introduce 24 benchmarks for
key machine learning tasks: molecular property prediction, molecular interaction prediction, and
molecular optimization, all accompanied by extensive programmatic support and rigorous empirical
results in the Therapeutics Data Commons [17]. Our results suggest that even the strongest algorithms
fall short when evaluated in the wild, calling for model innovation.
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generation (1/3)

• Finding 1: Models perform poorly in challenging yet 
realistic setting (i.e., they do not beat best-in-data 
reference when they are given 1,000 # calls)
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Table 3: Leaderboard on TDC DRD3 docking benchmark using TDC.ZINC and TDC.Docking. Mean and standard deviation across three
runs are reported. Arrows (", #) indicate the direction of better performance. The best method is bolded and the second best is underlined.

Method Category Domain-Specific Methods State-of-the-Art Methods in ML

Metric Best-in-data # Calls Screening Graph-GA [20] LSTM [34] GCPN [45] MolDQN [46] MARS [42]

# Params. - - 0 0 3149K 18K 2694K 153K

Top100 (#) -12.080

1000

-9.693±0.019 -11.224±0.484 -9.971±0.115 -9.053±0.080 -6.738±0.042 -8.224±0.196
Top10 (#) -12.590 -10.777±0.189 -12.400±0.782 -11.163±0.141 -11.027±0.273 -7.506±0.085 -9.843±0.068
Top1 (#) -12.800 -11.500±0.432 -13.233±0.713 -11.967±0.205 -12.033±0.618 -7.800±0.042 -11.100±0.141
Diversity (") 0.864 0.873±0.003 0.815±0.046 0.871±0.004 0.913±0.001 0.904±0.001 0.871±0.004
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.757±0.026 0.777±0.096 0.777±0.026 0.170±0.022 0.033±0.005 0.563±0.052
Top1 Pass (#) -11.700 -9.167±0.047 -10.600±0.374 -9.367±0.094 -8.167±0.047 -6.450±0.085 -7.367±0.205
m1 (#) 5.100 5.527±0.780 7.695±0.909 4.818±0.541 10.000±0.000 10.000±0.000 6.037±0.137

Top100 (#) -12.080

5000

-10.542±0.035 -14.811±0.413 -13.017±0.385 -10.045±0.226 -8.236±0.089 -9.509±0.035
Top10 (#) -12.590 -11.483±0.056 -15.930±0.336 -14.030±0.421 -11.483±0.581 -9.348±0.188 -10.693±0.172
Top1 (#) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450
Diversity (") 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087
Top1 Pass (#) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082
m1 (#) 5.100 5.610±0.805 9.669±0.468 5.826±1.908 10.000±0.000 10.000±0.000 7.073±0.798

Results. Results are shown in Table 3 and 4 (Appendix). Overall, we observe that almost all models
cannot perform well under a limited oracle setting. The majority of the methods cannot surpass the
best-in-data docking scores with less than 1,000 allowable oracle callings. In the 5,000 oracle callings
setting, Graph-GA (-14.811) and LSTM (-13.017) finally surpass the best-in-data result. Graph-GA
dominates the leaderboard with 0 learnable parameters in terms of optimization ability, while a simple
SMILES LSTM ranks behind. Other SOTA ML models that reported excellent performances in
unlimited trivial oracles cannot beat virtual screening when allowing less than 5,000 oracle calls.
This result questions the utility of the current ML SOTA methods and calls for a shift of focus on the
current ML molecular generation communities to consider realistic constraints during evaluation.

Additionally, we observed that as the number of allowable oracles calls increases, the more significant
fraction generates unsynthesizable molecular structures despite the increasing affinity, which confirms
with the systematic study conducted by [9]. The best performing Graph GA showed a monotonous
increment in the m1 score when we allow more oracle calls. In the 5,000 calls category, only 2.3% -
52.7% of the generated molecules pass the molecule filters, and within the passed molecules, the best
docking score drops significantly compared to before the filter. The recent synthesizable constrained
generation [12, 4, 11] is a promising approach to tackle this problem. We expect to see more ML
models explicitly considering synthesizability.

3 Conclusion

To facilitate algorithmic and scientific innovation in therapeutics, we introduce 24 benchmarks for
key machine learning tasks: molecular property prediction, molecular interaction prediction, and
molecular optimization, all accompanied by extensive programmatic support and rigorous empirical
results in the Therapeutics Data Commons [17]. Our results suggest that even the strongest algorithms
fall short when evaluated in the wild, calling for model innovation.
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Table 3: Leaderboard on TDC DRD3 docking benchmark using TDC.ZINC and TDC.Docking. Mean and standard deviation across three
runs are reported. Arrows (", #) indicate the direction of better performance. The best method is bolded and the second best is underlined.

Method Category Domain-Specific Methods State-of-the-Art Methods in ML

Metric Best-in-data # Calls Screening Graph-GA [20] LSTM [34] GCPN [45] MolDQN [46] MARS [42]

# Params. - - 0 0 3149K 18K 2694K 153K

Top100 (#) -12.080

1000

-9.693±0.019 -11.224±0.484 -9.971±0.115 -9.053±0.080 -6.738±0.042 -8.224±0.196
Top10 (#) -12.590 -10.777±0.189 -12.400±0.782 -11.163±0.141 -11.027±0.273 -7.506±0.085 -9.843±0.068
Top1 (#) -12.800 -11.500±0.432 -13.233±0.713 -11.967±0.205 -12.033±0.618 -7.800±0.042 -11.100±0.141
Diversity (") 0.864 0.873±0.003 0.815±0.046 0.871±0.004 0.913±0.001 0.904±0.001 0.871±0.004
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
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Top1 (#) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450
Diversity (") 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087
Top1 Pass (#) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082
m1 (#) 5.100 5.610±0.805 9.669±0.468 5.826±1.908 10.000±0.000 10.000±0.000 7.073±0.798

Results. Results are shown in Table 3 and 4 (Appendix). Overall, we observe that almost all models
cannot perform well under a limited oracle setting. The majority of the methods cannot surpass the
best-in-data docking scores with less than 1,000 allowable oracle callings. In the 5,000 oracle callings
setting, Graph-GA (-14.811) and LSTM (-13.017) finally surpass the best-in-data result. Graph-GA
dominates the leaderboard with 0 learnable parameters in terms of optimization ability, while a simple
SMILES LSTM ranks behind. Other SOTA ML models that reported excellent performances in
unlimited trivial oracles cannot beat virtual screening when allowing less than 5,000 oracle calls.
This result questions the utility of the current ML SOTA methods and calls for a shift of focus on the
current ML molecular generation communities to consider realistic constraints during evaluation.

Additionally, we observed that as the number of allowable oracles calls increases, the more significant
fraction generates unsynthesizable molecular structures despite the increasing affinity, which confirms
with the systematic study conducted by [9]. The best performing Graph GA showed a monotonous
increment in the m1 score when we allow more oracle calls. In the 5,000 calls category, only 2.3% -
52.7% of the generated molecules pass the molecule filters, and within the passed molecules, the best
docking score drops significantly compared to before the filter. The recent synthesizable constrained
generation [12, 4, 11] is a promising approach to tackle this problem. We expect to see more ML
models explicitly considering synthesizability.

3 Conclusion

To facilitate algorithmic and scientific innovation in therapeutics, we introduce 24 benchmarks for
key machine learning tasks: molecular property prediction, molecular interaction prediction, and
molecular optimization, all accompanied by extensive programmatic support and rigorous empirical
results in the Therapeutics Data Commons [17]. Our results suggest that even the strongest algorithms
fall short when evaluated in the wild, calling for model innovation.
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Results: Docking molecule 
generation (3/3)

• Finding 3: The greater the number of calls, the worse 
the quality of generated molecules (drug-likeliness)



Machine learning 
foundation for therapeutics

Domain 
scientists

AI/ML
scientists

Identify meaningful 
tasks and datasets

Design
AI/ML methods

Facilitate algorithmic and scientific advance 
in therapeutics

TDC supports the development of novel ML theory and methods, with a strong 
bent towards developing the mathematical foundations of which ML algorithms are 

most suitable for drug discovery applications and why

https://tdcommons.ai

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Machine Learning Foundation for Drug Discovery and Development, Nature Chemical Biology, (in press), 2022 45
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Lifecycle of therapeutics ML

. . .

https://tdcommons.ai

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Machine Learning Foundation for Drug Discovery and Development, Nature Chemical Biology, (in press), 2022 46
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https://tdcommons.ai

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Machine Learning Foundation for Drug Discovery and Development, Nature Chemical Biology, (in press), 2022 47
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Key Takeaways
§ TDC provides an artificial intelligence foundation for therapeutic 

science
§ Python package: Tools, libraries, leaderboards, and resources, including 

data functions, strategies for systematic model evaluation, meaningful 
data splits, data processors, and molecule generation oracles

§ AI-ready datasets cover a range of therapeutic modalities, including 
small molecules, biologics, antibodies, peptides, miRNAs, and gene 
therapies

§ Solvable AI tasks cover all stages of drug discovery:
– Target discovery: Tasks to identify candidate therapeutic targets
– Activity modeling: Tasks to screen and generate individual or 

combinatorial candidates with high binding activity
– Efficacy and safety: Optimize signatures indicative of safety and efficacy
– Manufacturing: Tasks on the manufacturing and synthesis of therapeutics

§ Resources
§ Website: https://tdcommons.ai
§ Paper: https://arxiv.org/abs/2102.09548
§ GitHub: https://github.com/mims-harvard/TDC
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Antibiotic discovery timeline

51

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Natural product mining

Small compound 
screening



GNN to learn molecular structure
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.



Experimental setup
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Input Output

Empirical Validation 
(Broad Repurposing Hub)

Task: Test top 99 predictions & 
prioritize based on similarity to known 
antibiotics or predicted toxicity

Training Dataset
(Human Medicines and Natural Products)

Data: 2,335 molecules (human 
medicines and natural products) 
screened for growth inhibition

Data: 6,111 molecules (at various 
stages of investigation for human 
diseases) in Broad Repurposing Hub

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.



Results
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Halicin was developed to be an anti-diabetic drug, but the development was 
discontinued due to poor results in testing.

Halicin against 
E. coli

Halicin against 
M. tuberculosis

Halicin predicted to 
be antibacterial

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.



Results
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Halicin’s efficacy in murine models of infection



Key Takeaways
§ Directed message passing neural network model 

iteratively (1) learns representations of molecules and 
(2) optimizes the representations for predicting growth 
inhibition

§ Validated against ~6K molecules in the Broad 
Repurposing Hub to identify candidate antibiotics

§ Halicin, initially developed to be an anti-diabetic drug 
(but discontinued due to poor results in testing), is 
identified and verified through experiments as a 
promising antibiotic

§ Resources
§ Paper: doi.org/10.1016/j.cell.2020.01.021
§ Chemprop resources:

– Paper: doi.org/10.1021/acs.jcim.9b00237
– GitHub: github.com/chemprop/chemprop
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Rapid therapeutic innovation
§ Traditional, iterative development, experimental & clinical testing, 

and approval of new drugs sometimes not feasible
§ Certain therapeutic areas, public health emergencies

§ Challenge: How to compress years of work into months or even 
weeks through AI, automation, and new data resources?

This talk: Approach

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 59
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Kidney 
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Medical image

OC1=NC=NC2=C1C=NN2

Electronic 
Health 

Records

What drug treats what disease?

Representation Learning for Networks in Biology and Medicine: Advancements, Challenges, and Opportunities, 2021, arXiv:2104.04883

Goal: Predict what diseases a 
given compound might treat

Graph Representation Learning in Biomedicine, Nature Biomedical Engineering, 2021 (in press), arXiv:2104.04883
Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities, Information Fusion 2019
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COVID-19 disease module

Viral Disease Module: Gordon et al., Nature 2020 
expressed 26 of the 29 SARS-CoV2 proteins and 
used AP-MS to identify 332 human proteins to 
which viral proteins bind Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 202162
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§ COVID-19 repurposing knowledge graph:
§ Human protein-protein interaction graph
§ All U.S. approved drugs and proteins they bind to
§ All common diseases and proteins they cause them
§ COVID-19 disease and proteins causing the disease
§ All approved treatments for common diseases

§ Goal: Given common diseases and treatments for 
them, identify candidate treatments for COVID-19 
in a zero-shot manner

Dataset and experimental setup

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 63
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Why is this task challenging?
Challenge: Generalizing to new phenomena is hard:
○ Prevailing methods require abundant label information
○ However, labeled examples are scarce
○ Examples: Novel drugs in development, emerging 

pathogens, rare diseases, hard-to-diagnose patients
What prevailing 

methods assume
What happens in 

real world

Today: Few-shot learning for graphs

64
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Meta-Training Meta-Testing
Background: Few-shot learning

An example of 2-shot 3-way image classification
Few-shot learning: Instantiation of meta learning in the field of supervised learning

K-shot N-class classification: K labeled examples for each of N classes

At test time, we need to build a “duck vs. dolphin 
vs. chicken” classifier. However, we have only 2 

labeled examples for each class! Few-shot 
learning makes this possible.

65

Next: Few-shot learning for graphs
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Meta-Training Meta-Testing

Drug 1 Drug 2 Drug 3

Drug 4 Drug 5 Drug 6

Drug 7 Drug 8 Drug 9

Drug 10 Drug 11 Drug 12

Drug a Drug b Drug c Drug d Drug e Drug f Drug g Drug h Drug i

Disease 1 Disease 2 New disease

Few-shot learning for drugs

Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

Graph Meta Learning via Local Subgraphs, NeurIPS 2020

Deep graph AI approach

COVID-19

No examples of 
successful treatments
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We test each method’s ability to 
recover drugs currently in clinical trials 
for COVID-19 (67 drugs from 
ClinicalTrials.gov)

The best individual ROC curves are 
obtained by the GNN methods 

The second-best performance is 
provided by the proximity P3. Close 
behind is P1 with AUC = 0.68 and 
AUC = 0.58

Diffusion methods offer ROC between 
0.55-0.56
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Results: COVID-19 repurposing
Deep graph 
AI approach

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 67
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National Emerging Infectious 
Diseases Laboratories (NEIDL)

New algorithms:
Prioritizing Network Communities, Nature Communications 2018
Subgraph Neural Networks, NeurIPS 2020
Graph Meta Learning via Local Subgraphs, NeurIPS 2020

Results: 918 compounds screened for their efficacy 
against SARS-CoV-2 in VeroE6 & human cells:
§ We screened in human cells the top-ranked 

drugs, obtaining a 62% success rate, in contrast 
to the 0.8% hit rate of nonguided screenings

§ This is an order of magnitude higher hit rate 
among top 100 drugs than alternative approach

Predicted lists of drugs

Results: Experimental screening

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 68
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Explaining machine predictions
Key idea: 
§ Summarize where in the data the model “looks” for 

evidence for its prediction
§ Find a small subgraph most influential for the prediction 

Approach to generate explanations 
for graph neural networks based 
on counterfactual reasoning

GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 69
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GNNExplainer: key idea
§ Input: Given prediction 𝑓(𝑥) for node/link 𝑥
§ Output: Explanation, a small subgraph 𝑀! together 

with a small subset of node features:
§ 𝑀! is most influential for prediction 𝑓(𝑥)

§ Approach: Optimize mask 𝑀! in a post-hoc manner
§ Intuition: If removing 𝑣 from 

the graph strongly 
decreases the probability of 
prediction ⇒ 𝑣 is a good 
counterfactual explanation 
for the prediction

GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 70
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Example of explanations
”Will rosuvastatin treat hyperlipidemia? What
is the disease treatment mechanism?” 

GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019
Discovery of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications, 2021 71

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022



Predictions Network drugs
§ 76/77 drugs that successfully reduced viral infection 

do not bind proteins targeted by SARS-CoV-2:
§ These drugs rely on network-based actions that cannot 

be identified by docking-based strategies

Network drugs (D3)
Direct target 
drugs (D1, D2) 
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Key Takeaways
§ Approach to identify repurposable drugs for future pathogens 

and neglected diseases underserved by the costs and 
extended timeline of de novo drug development

§ Algorithms we deployed algorithms relying on artificial 
intelligence, network diffusion, and network proximity: 
§ No single predictive algorithm offers consistently reliable outcomes 

across all datasets and metrics 
§ Multimodal approach fused predictions of all algorithms, finding 

that a consensus among different predictive methods and 
consistently exceeding performance of the best individual algorithm 

§ Top-ranked drugs screened in human cells yield a 62% success 
rate in contrast to the 0.8% hit rate of nonguided screenings 

§ Resources
§ Paper: https://www.pnas.org/doi/full/10.1073/pnas.2025581118
§ Webinar: https://www.youtube.com/watch?v=jS8__WViNj4
§ GitHub:

– COVID-19 repurposing: https://github.com/Barabasi-Lab/COVID-19
– Multimodal fusion: https://github.com/mims-harvard/crank
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Graph RL for therapeutics
Summary

§ TDC: Open-science initiative with AI-ready datasets, AI tasks, and 
benchmarks for therapeutic science

§ Deep learning for antibiotic discovery: Generative methods can 
examine several orders of magnitude larger chemical spaces than 
standard chemical libraries and generate compounds with desired 
drug-like properties

§ COVID-19 drug repurposing: When designing new drugs from 
scratch is not feasible, repurposing offers an enticing alternative. 
Few-shot methods can identify promising therapeutic opportunities 
for diseases with few treatment options

Poll Question
What is your dream AI/ML-ready dataset and AI/ML task for 

therapeutics? Fill in the blank

Q&A Session
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PRECISION MEDICINE
Applications of graph representation learning on…
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1. Histopathology images of tissue biopsies
2. Patient electronic health records
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Motivation
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Cancer diagnosis

Histopathology slides
(tumor microenvironment)

Genomic sequencing
(genotypic expression)

1. Current paradigm 
requires subjective & 
visual assessment by 
pathologists

2. Existing methods 
only consider single 
modalities at a time



Overview of Pathomic Fusion
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for 
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.



GCN for whole slide images
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for 
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.



Experimental setup
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Data
• 470 paired samples
• 20 x 1024 x 1024 Histology regions of  

interest (ROIs) (1-3 per patient)
• 1 Mutation, 79 CNV, 240 RNA-Seq

Experiments
• Compare to WHO Grade + Subtype
• 15-Fold CV

Data
• 417 paired samples
• 40 x 512 x 512 Histology regions of  interest 

(ROIs) (3 per patient)
• 117 CNV, 240 RNA-Seq

Experiments
• Compare to Fuhrman Grade
• 15-Fold CV

Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for 
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.



Results
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for 
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for 
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.



Key Takeaways
§ Pathomic Fusion is

§ Objective and multimodal
§ Interpretable
§ Adaptable to any type or combination of modalities
§ Locally and globally interpretable
§ Reproducible and publicly available

§ Resources
§ Paper: ieeexplore.ieee.org/document/9186053
§ GitHub: github.com/mahmoodlab/PathomicFusion
§ Talk: youtube.com/watch?v=TrjGEUVX5YE
§ Synthetic dataset: doi.org/10.1038/s41551-021-00751-8
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https://ieeexplore.ieee.org/document/9186053
https://github.com/mahmoodlab/PathomicFusion
https://www.youtube.com/watch?v=TrjGEUVX5YE
https://doi.org/10.1038/s41551-021-00751-8


PRECISION MEDICINE
Applications of graph representation learning on…
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1. Histopathology images of tissue biopsies
2. Patient electronic health records
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1. Histopathology images of tissue biopsies
2. Patient electronic health records



Motivation
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Incoming patient Hospital Medication

Lab tests

Expensive Incomplete



Overview of MedGCN
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Patient 1 Patient 2 Patient 3 Med 1 Med 2 Med 3

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6

Encounter 1 Encounter 2 Encounter 3 Encounter 4

MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.



MedGCN Message Propagation
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MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.



Experimental setup
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NMEDW

MIMIC-III

MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.
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NMEDW MIMIC-III

Medication Recommendation

Lab Test Imputation

MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.



Key Takeaways
§ MedGCN

§ Incorporates complex associations between 
multiple medical entities (e.g., patients, labs, 
encounters, medications)

§ Extends general GCN model to heterogeneous 
graphs and missing feature values for medical 
settings

§ Learn multiple tasks via cross regularization
§ Is inductive to efficiently generate representations 

for new data

§ Resources
§ Paper: doi.org/10.1016/j.jbi.2022.104000
§ GitHub: github.com/mocherson/MedGCN
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https://doi.org/10.1016/j.jbi.2022.104000
https://github.com/mocherson/MedGCN


Why are precision medicine 
applications so challenging?

§ Methods presented so far optimize for accuracy
§ Accuracy alone is no longer enough
§ Life or death decisions 

§ Need robust algorithms 
§ Ensure that models behave responsibly
§ Ensure that models are trustworthy
§ Checks and balances built into ML deployment 

§ Other criteria are important too:
§ Explainable predictions and interpretable models
§ Privacy-preserving, causal, and robust predictions
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Towards fair & stable GNNs (1/3)
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§ As the representations output by GNNs are 
considered for real-world implementation, it is 
important that representations are fair and stable 

§ NIFTY (uNIfying Fairness and stabiliTY) is a novel 
framework: 
§ It can be used with any GNN to learn fair and stable 

representations
§ It develops:

§ an objective function that simultaneously accounts for fairness 
and stability 

§ a layer-wise weight normalization using the Lipschitz constant to 
enhance neural message passing in GNNs 

§ Theoretical proved that NIFTY promotes counterfactual 
fairness and stability in the resulting representations

Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021



Towards fair & stable GNNs (2/3)
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Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021

Code and datasets: https://zitniklab.hms.harvard.edu/projects/NIFTY

§ NIFTY learn node representations that 
are both fair and stable 
§ Invariant to sensitive attribute value 
§ Invariant to perturbations of the graph 

structure and non-sensitive attributes 

§ NIFTY’s objective function jointly 
optimizes for fairness and stability:
§ Maximize similarity between:
§ Representations of original nodes
§ Representation of nodes in augmented graph 

§ Augmented graph is generated by:
§ Slightly perturbing original node attributes 

and edges 
§ Considering counterfactuals of the original 

nodes where the value of the sensitive 
attribute is modified

https://zitniklab.hms.harvard.edu/projects/NIFTY


Towards fair & stable GNNs (3/3)
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Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021

Code and datasets: https://zitniklab.hms.harvard.edu/projects/NIFTY

https://zitniklab.hms.harvard.edu/projects/NIFTY


Graph RL for precision medicine
Summary

§ Pathomic Fusion: Applies a graph convolutional 
network to represent & integrate histopathology slides 
with genomic features for patient cancer diagnosis

§ MedGCN: Simultaneously represents the complexity 
of relationships between patients, encounters, labs, 
and medications while imputing missing lab tests’ 
values to recommend medications for patients

Poll Question
What other applications in precision medicine require (or 
should require) ethical considerations? Fill in the blank

Q&A Session
96
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This Tutorial
1. Methods: Network diffusion, shallow 

network embeddings, graph neural 
networks, equivariant neural networks

2. Applications: Fundamental biological 
discoveries and precision medicine

3. Hands-on exercises: Demos, 
implementation details, tools, and tips
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Resources
§ Books & survey papers

§ William Hamilton, Graph Representation Learning
(morganclaypool.com/doi/abs/10.2200/S01045ED1V01Y202009AIM046)

§ Li et al., Graph Representation Learning for Biomedicine 
(arxiv.org/abs/2104.04883)

§ Keynotes & seminars
§ Michael Bronstein, “Geometric Deep Learning: The Erlangen Programme of 

ML” (ICLR 2021 keynote) (youtube.com/watch?v=w6Pw4MOzMuo)
§ Broad Institute Models, Inference & Algorithms: Actionable machine learning 

for drug discovery; Primer on graph representation learning 
(youtube.com/watch?v=9YpTYdru0Rg)

§ Stanford University (CS224W Lecture): Graph neural networks in 
computational biology (youtube.com/watch?v=_hy9AgZXhbQ)

§ AI Cures Drug Discovery Conference (youtube.com/watch?v=wNXSkISMTw8)

§ Conferences & summer schools
§ London Geometry and Machine Learning Summer School (logml.ai)
§ Learning on Graphs Conference (logconference.github.io)
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Resources
§ Software & packages

§ PyTorch Geometric
§ NetworkX
§ Stanford Network Analysis Platform (SNAP)

§ Tutorials & code bases
§ Pytorch Geometric Colab Notebooks (pytorch-

geometric.readthedocs.io/en/latest/notes/colabs.html)
§ Zitnik Lab Graph ML Tutorials (github.com/mims-harvard/graphml-tutorials)
§ Stanford University’s CS224 (web.stanford.edu/class/cs224w)

§ Datasets
§ Precision Medicine Oriented Knowledge Graph (PrimeKG) 

(zitniklab.hms.harvard.edu/projects/PrimeKG)
§ Therapeutic Data Commons (TDC) (tdcommons.ai)
§ BioSNAP (snap.stanford.edu/biodata/)
§ Open Graph Benchmark (OGB) (ogb.stanford.edu)
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