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Biology Is interconnected
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o \ Noncoding RNA The effects of drugs are not limited to the
g molecules to which they directly bind in the

body. Instead, these effects spread throughout
biological networks in which they act.
Therefore, the effect of a drug on a disease is

inherently a network phenomenon
Graph Representation Learning for Biomedicine, Nature Biomedical Engineering (in press), 2022, arXiv:2104.04883 5
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Graph representation learning realizes key
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: B Cellular components associated with a specific disease
| (phenotype) show a tendency to cluster in the same

: network neighborhood

|
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B Deep graph representation learning methods are well-
suited for the analysis of biological networks
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Graph Representation Learning for Biomedicine, Nature Biomedical Engineering (in press), 2022, arXiv:2104.04883
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Methods: Network diffusion, shallow
network embeddings, graph neural
networks, equivariant neural networks

. Applications: Fundamental biological

discoveries and precision medicine

. Hands-on exercises: Demos,

implementation details, tools, and tips



Applications of graph representation learning on...

DISEASES

1. Single-cell transcriptomics data
2. Spatial transcriptomics data
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Applications of graph representation learning on...

DISEASES

1. Single-cell transcriptomics data
2. Spatial transcriptomics data

Disease State Prediction From Single-Cell Data Using Graph
Attention Networks
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ross-tissue human cell atlases

Single-cell ~ ._.* %
transcriptomics ¢ &

} 1. Which cell types are
. disease genes active?
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Lymph Node [ ] [ ] . 53,275
Mammary Gland ® 11375

2. How does a disease gene’s
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. . same cell type”? Across cell
Spleen [} [} [ ] 34,004  Number yp . r
Thymus [ ) [ ) 33664  Of g;:'os
Tongue 15,020 :12000 ‘t eS ,?
Trachea ® [ 9,522 8000 .
Uterus ® 7124 igggg
Vasculature [ ] [} 16,037
TSP1 TSP2 TSP7 TSP14  Additional Total
11 Donors 483,152 cells

The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans, Science, 2022.
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Limitations of existing methods

sCRNA-seq pipelines studying genetics & disease

Gene
—

S
o B &
© =
O —_

Filtering, normalizing, Differential gene expression
and clustering (DGE) analysis

Limitations of using differential gene expression (DGE)

= DGE is not necessarily associated with disease or cell state

= The “most differentially” expressed genes do not yield causal structure
=  Most DGE methods don’t allow for interactions between features

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Leveraging cell-cell interactions

Gene
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Identify cells from transcriptome Create cell graph Leverage neural message passing

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Leveraging cell-cell interactions

Cells

Identify cells from transcriptome Create cell graph

scRNA-seq pipeline SCGAT " Cell-by-cell .predlctlon_ and
: hypothesis generation
Gene counts
o Cell.o g
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Disease State Pred|ct|on From Single-Cell Data Using Graph Attention Netvvorks ACM CHIL, 2020.
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Leveraging cell-cell interactions
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Identify cells from transcriptome Create cell graph Leverage neural message passing

Which cell-cell interactions contribute the
most/least to a specific disease state?

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Overview

Patient Dataset
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Experimental Setup

Patients

Gene expression .
Healthy 1 L knn-graph

Cells

MS1

L
LS ( N | Blood and CSF
N from 6 HA and 7MS

~100K cells

eHA1
e HA2
e HA3
=4 e HA4
e HAS
e HA6

UMAP2

e MS1
o MS 2
e MS3
MS 4
MS 5
MS 6
e MS7

UMAP1

Healthy
Graph neural N §
network model Predict /.
MS
0]
W
o {48
Cell j " '
v w4
Learnnew e -
embeddings to identify
phenotypic cells
Task Train | Dev Test
Inductive # Nodes 43866 | 9686 13033
# Edges 332398 | 73552 | 100715
# Features | 22005 | 22005 | 22005
# Classes 2 2 2
# Graphs 1 1 1
Transductive | # Nodes 54000 | 6000 6667
# Features | 22005 | 22005 | 22005
# Classes 2 2 2
# Edges 5007093

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Results

Original Space Learned Latent Space
? owms ® MS
. © HA HA
N ¢ N
o o
< <
Z \ \ ¥ Z #s
3 2| 3
UMAP1 UMAP1
Task Model Accuracy  w  Transductive task: Randomly assign 10%
Random 51.8 nodes for validation & 10% for testing
Inductive MLP 56.7 = Keeping ratio of healthy & MS cells
Random Forest 58.5 same as in full dataset
Graph Convolutional Network 72.1 = |nductive task: Randomly choose a
Graph Attention Network(our) 92.3 +.7 healthy adult & MS patient
Transductive  Graph Convolutional Network 82.91 = Train on remaining 5 MS patients
Graph Attention Network(our) 86 +.3 and 4 healthy adults

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Results

Ground truth

Predicted probabilities from induction task per cell

Pearson: 0.82

MS Probability by GAT o
o MS "
HA N 0.8 >0.8]
N : ~ A, =
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Ground Truth

Aggregating predicted probabilities shows cell
types important for predicting disease state

Variance of a patient’s cells’ probability of being
in an MS state may indicate timing of flare-up

Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.
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Disease State Prediction From Single-Cell Data Using Graph Attention Networks, ACM CHIL, 2020.



Key lakeaways

= Cell graphs enable modeling of cell-cell interactions
= Jypically not considered in standard scRNA-seq pipelines
studying disease

=  GAT outperforms classic models as well as related GNNs
(without attention mechanism) in predicting disease state
from a transcriptome

= Aggregating predicted probabilities shows cell types important
for predicting disease state

= Variance of a patient’s cells’ probability of being in an MS state
may indicate timing of flare-up

= [op predictive features regulate may be candidates for
therapeutic targets

= Resources
= Paper: dl.acm.org/doi/10.1145/3368555.3384449
=  GitHub: github.com/vandijklab/scGAT
» Follow-up work on COVID-19: arxiv.org/abs/2007.04777



https://dl.acm.org/doi/10.1145/3368555.3384449
https://github.com/vandijklab/scGAT
https://arxiv.org/abs/2007.04777

Applications of graph representation learning on...

DISEASES

1. Single-cell transcriptomics data
2. Spatial transcriptomics data
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Applications of graph representation learning on...

DISEASES

1. Single-cell transcriptomics data
2. Spatial transcriptomics data

GCNG: graph convolutional networks for
inferring gene interaction from spatial
transcriptomics data

Ye Yuan' and Ziv Bar-Joseph'#’
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Motivation

1. Leverage higher-
order interactions
between cells

2. Utilize both gene
expression & cellular
organization

3. Overcome
incomplete spatial
relationships

20
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Overview

Spatial single cell Cell neighborhood graph
expression

cag. Cog
L

OO
[

genes cells
Gene pair « % | Graph adjacency
expression @ 9 matrix
matrix
LI
rap
convolutionak; latten layer
layer Dense layer
Class
Graph =S Q@
convolutional
layer
- = | V
4

Graph convolutional neural network

GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020.

21
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Experimental setup

SeqFISH+ “@_; MERFISH ))b

Mouse cortex tissue Cells (in vitro)
Expression data: 10,000 genes = Expression data: 10,050 genes
in 913 cells from 1368 cells
Labeled ligand-receptor pairs: » |abeled ligand-receptor pairs:
1056 known interactions 841 known interactions between
between 309 ligands and 481 270 ligands and 376 receptors
receptors
Train set
‘ — Training edges
Test edges
{ % Discarded edges

. Receptor genes
‘ Ligand genes

Interacting receptor b

Ligand a Non Interacting receptor x 0
Interacting receptor ¢ Bl
Ligand a Non Interacting receptor y 0

GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020. .
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Results: Inferring L-R interaction

E seqFISH+ F MERFISH

09 0.9
2 rpethod g method
3 mm single cell PC 3 06 mm single cell PC
g 0.6 == Giotto g = Giotto
£ == spatial PC = mm spatial PC
o mm diagonal GCNG o mm diagonal GCNG
g mm autocrine+ GCNG > mm autocrine+ GCNG

mm exocrine GCNG 05 mm exocrine GCNG
0.3
PR ROC PR ROC
Curve_type Curve_type

=  Single cell Pearson correlation (PC): Pearson correlation between the expression of
ligands and receptors within each cell

=  Giotto: Calculate similarity score for all pairs of genes in all pairs of neighboring cell
types = Rank pairs based on average score

= Spatial PC: PC between ligand and receptors in neighboring cells

= Diagonal GCNG: Only uses a diagonal matrix to represent the graph - Only autocrine
interactions are possible

=  Exocrine GCNG: Only exocrine interaction between cells are allowed

= Autocrine+ GCNG: Both autocrine and exocrine interactions

GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020. -
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Results: Functional prediction
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GCNG: Graph convolutional networks for inferring gene interactions from spatial transcriptomics data, Genome Biology, 2020. s
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Key lakeaways

= GCNG

Encodes the spatial information as a graph

Combines the spatial cell neighborhood graph with expression data
using supervised learning

— Unlike standard approaches, which rely on unsupervised correlation-
based analysis

Can propose novel pairs of extracellular interacting genes

Outputs can be used for downstream analysis, including functional
assignment

= Resources

Paper: genomebiology.biomedcentral.com/articles/10.1186/s13059-
020-02214-w

GitHub: github.com/xiaoyeye/GCNG

Relevant papers:

—  Wang et al. Nature Communications (2021) scGNN is a novel graph
neural network framework for single-cell RNA-seq analysis

— Ding and Regev, Nature Communications (2021). Deep generative
model embedding of single-cell RNA-seq profiles on hyperspheres
and hyperbolic spaces

25


https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02214-w
https://github.com/xiaoyeye/GCNG
https://www.nature.com/articles/s41467-021-22197-x
https://www.nature.com/articles/s41467-021-22851-4

Graph RL for diseases

Summary

=  Single cell GAT: Model cellular interactions to learn disease
state of cells while identifying (via attention mechanism) the
cell types and biomarkers that contributed most to disease

= Spatial transcriptomics: Construct a spatial cell
neighborhood graph and combine with expression data to
model cellular interactions with gene- to tissue-level
organization

Poll Question

What diseases might the use of graph representation learning
on single-cell/spatial transcriptomics data be the MOST or
LEAST impactful for? Fill in the blank

Q&A Session



Applications of graph representation learning on...

THERAPEUTICS

1.  Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Step 1: Design and
Discovery

Step 2:!eclinical

Research

A

Step 3: Clinical
Research

.4

Step 4: FDA
Review

¥

Step 5: Post-Market and )
Safety Monitoring
y 1 compound
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Applications of graph representation learning on...

THERAPEUTICS

1. Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

Therapeutics Data Commons: Machine Learning
Datasets and Tasks for Drug Discovery and
Development

Kexin Huang'; Tianfan Fu?; Wenhao Gao®; Yue Zhao*, Yusuf Roohani®,
Jure Leskovec®, Connor W. Coley?, Cao Xiao®, Jimeng Sun’, Marinka Zitnik'
'Harvard ?Georgia Tech *MIT “CMU °Stanford ® Amplitude “UIUC
contact@tdcommons.ai

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022 29
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Compelling appl
graph

ications of

I want to know the solubility of a compound of interest. ]

| want to iteratively design a small
molecule drug, informed by ADMET and
binding affinity predictions.

Answer
Machine
learning I:> Predicted
model solubility
Candidate compound
| want to know the binding affinity
of Ritonavir to 3CL protease.
Input b Answer
(i '¥ o ‘,’S": Machine
%\r + g0 =)  learning Predicted
4 & model binding affinity
3CL protease  Ritonavir

| want to generate a highly potent compound that
effectively binds a therapeutic target.

Input Answer
Machine m
I' |:> learning E> WwkJ T "D
model Al-generated
Therapeutic target compound

AMINO ACID SIQUEINCE
EGNPY
MOLECULE
p oM~ -~ LRECIES
%
o

A

7 Ao N Y o

c o

. O _N_ _NH
[« P A" V v
« 0 / [
. \—O0 / 4‘ — 0
4
- - Lo
"
GIR A Q a2 0 |

AFFINITY PREDICTION MODEL TYPE

MPNN-CNN 2

ADMET PREDICTION MODEL TYPE

MENN -

S I —
CANONICAL SMILES
O=cl(nl]c(=0)n(ccl) (CEEH)Z0(CRER) ([CEEN)([CEE)2(F)C)O0)COP(=0) (N[CEEH)
(€(0C(C)C)=0)C)0cIcccced
BINDING AFINITY (XD)
749.91 nM
PREDICTED ADMET PROPERTY
Property value
solubility -2.88 log mol/L
Lipophilicity 1.21 (log-ratio)
(Absorption) Caco-2 5.39 cn,
(Absorption) WIA 67.58 %
(Absorption) Pgp 2.1
(Absorption) Bicavailability r2o T4.56 %
(Distribution) 888 5717 4
(Distribution) PPER 26.57 v
(Metabolism) CYP2C19 9.52 v
(Metabolism) CYP206 1154
(Metabolism) CYPIAG 10.25 4
(Metabolism) CYPIA2 1634
(Metabolism) CYPCY 1.56
(Execretion) Half life s.28n
(Execretion) Clearance 5.08 nL/nin/kg
Clinical Toxicity 28,47 0
SCREENSHOT FAG

30
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Fingerprints
CNN+SMILES
GNN
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Absorption
Distribution
Metabolism
Excretion
Toxicity
Endpoints
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Datasets

22 datasets with ADMET endpoints

Absorption
Caco?2 (Cell Permeability)
HIA (Intestinal Absorption)

Pgp (P-glycoprotein) Excre’Fion

Bioavailability Half Life

Lipophilicity Clearance (Hepatocyte)
Solubility Clearance (Microsome)
Distribution Toxicity

BBB (Blood-Brain Barrier) LD30 (Acute Toxicity)
PPBR (Plasma Protein Binding) hERG blocker

VDss (Volume of Distribution) Ames Mutagenicity
_ Drug Induced Liver Injury
Metabolism

CYP2C9/2D6/3A4 Inhibition
CYP2C9/2D6/3A4 Substrate
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Results: ADMET prediction (1/3

Raw Feature Type |  Expert-Curated Methods | SMILES | Molecular Graph-Based Methods (state-of-the-Art in ML)
Dataset | Metric | Morgan [31] RDKit2D [24] | CNN[18] | NeuralFP [7] ~ GCN [23]  AttentiveFP [43]  AttrMasking [16] ContextPred [16]
\ # Params. \ 1477K 633K \ 227K \ 480K 192K 301K 2067K 2067K
TDC.Caco2 (}) MAE 0.90840.060 0.446+0036 | 0.530+0102  0.599+0.104 0.401+0.032 0.54640.052 0.502+0.036
TDC.HIA (1) AUROC 0.807+0.072 0.972+0.008 0.869-+0.026 0.943+0.014 0.936-+0.024 0.974+0.007 0.978-+0.006 0.975+0.004
TDC.Pgp (1) AUROC 0.880+0.006 0.918=+0.007 0.908=+0.012 0.902+0.020 0.895+0.021 0.892+0.012 0.929+0.006 0.923+0.005
TDC.Bioav (1) AUROC 0.581-£0.086 0.613+0.013 0.632+0036  0.566+0.115 0.632+0.039 0.577=x0.087 0.671+0.026
TDC.Lipo (|) MAE 0.7010.009 0.574+0.017 0.74340.020 0.563+0.023 0.54140.011 0.57240.007 0.547+0.024
TDC.AqSol () MAE 1.203+0.019 0.827+0.047 1.023+0.023 0.947+0.016 0.907+0.020 1.02640.020 1.040=+0.045
TDC.BBB (1) AUROC 0.823+0.015 0.889+0.016 0.781+0.030 0.836-+0.009 0.842+0.016 0.855+0.011 0.892+0.012 0.897 +0.004
TDC.PPBR () MAE 12.848+0.362 9.994+0319 11.10640358 | 19.292+0.384 | 10.194+0.373 9.373+0.335 10.075+0.202 9.445+0.224
TDC.VD (1) Spearman | 0.493+0011 | 0.561+0.025 0.226+0.114 0.258+0.162 0.457+0.050 0.241+0.145 0.559+0.019 0.485+0.092
TDC.CYP2D6-I (1) | AUPRC 0.587+0.011 0.616+0.007 0.544+0.053 0.627+0.009 0.616+0.020 0.646+0.014 0.721+0.009 0.7390.005
TDC.CYP3A4-1 (1) | AUPRC 0.827-+0.009 0.829-+0.007 0.821+0.003 0.849-+0.004 0.840-+0.010 0.851+0.006 0.902-+0.002 0.904-+0.002
TDC.CYP2C9-1 (1) | AUPRC 0.715+0.004 0.742+0.006 0.713+0.006 0.739+0.010 0.735+0.004 0.749+0.004 0.829+0.003 0.839-£0.003
TDC.CYP2D6-S (1) | AUPRC 0.671+0.066 0.677+0.047 0.485+0.037 0.572+0.062 0.617+0.039 0.574+0.030 0.704+0.028 0.736-+0.024
TDC.CYP3A4-S (1) | AUROC 0.633+0.013 0.639+0012  |[ 0.662r0.031] | 0.578+0.020 0.590+0.023 0.576+0.025 0.582+0.021 0.609+0.025
TDC.CYP2C9-S (1) | AUPRC 0.380-+0.015 0.360-0.040 0.367+0.059 0.359-+0.059 0.344+0.051 0.375+0.032 0.381+0.045 0.392-+0.026
TDC.Half_Life (1) Spearman || 0.329+0.083 0.184+o0.111 0.038+0.138 0.177+0.165 0.239-+0.100 0.085-+0.068 0.151+0.068 0.129+0.114
TDC.CL-Micro (1) | Spearman | 0.492+0020 [U.58620.014] 0.252+0.116 0.529-+0.015 0.532+0.033 0.365+0.055 0.585-+0.034 0.578+0.007
TDC.CL-Hepa (1) Spearman | 0.272+0.068 0.382+0.007 0.235=+0.021 0.401+0.037 0.366+0.063 0.289-+0.022 0.41340.028 | 0.439+0.026
TDC.hERG (1) AUROC 0.736+0023 [ 0.841=0.020] 0.754+0037 | 0.722x0034¢  0.738+0.038 0.825+0.007 0.778+0.046 0.756+0.023
TDC.AMES (1) AUROC 0.794-+0.008 0.823+0.011 0.776+0.015 0.823+0.006 0.818+0.010 0.814+0.008 0.842+0.008 0.837+0.009
TDC.DILI (1) AUROC 0.832+0.021 0.875+0.019 0.792+0.016 0.851+0.026 0.859-+0.033 0.886+0.015 0.919-+0.008 0.861+0.018
TDC.LD50 ({) MAE 0.649+0.019 0.678+0.003 0.675+0.011 0.667+0.020 0.649+0.026 0.678+0.012 0.685+0.025 0.669+0.030

* Finding 1: No single method has the best

performance across all scenarios

33



Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Results: ADMET prediction (2/3

Raw Feature Type |  Expert-Curated Methods | SMILES | Molecular Graph-Based Methods (state-of-the-Art in ML)
Dataset | Metric | Morgan [31] RDKit2D [24] | CNN[18] | NeuralFP [7] ~ GCN [23]  AttentiveFP [43]  AttrMasking [16] ContextPred [16]
\ # Params. \ 1477K 633K \ 227K \ 480K 192K 301K 2067K 2067K

TDC.Caco2 ({) MAE 0.908-:0.060 0.446+0036 | 0.530+0.02  0.599+0.104 0.401+0032 [0.546:0.052 0.502£0.036|
TDC.HIA (1) AUROC 0.807+0.072 0.972+0.008 0.869-+0.026 0.943+0.014 0.936-+0.024 0.974+0.007 0.978-+0.006 0.975+0.004
TDC.Pgp (1) AUROC 0.880+0.006 0.918=+0.007 0.908=+0.012 0.902+0.020 0.895+0.021 0.892+0.012 0.929+0.006 0.923+0.005
TDC.Bioav (1) AUROC 0.581:0.086 0.613+0013 | 0.632+0036  0.566+0.115 0.632+0.039 [0:577+0.087 0.671+0.026 |
TDC.Lipo () MAE 0.70140.009 0.574=+0.017 0.743+0.020 0.563+0.023 0.541+0.011 0.572+0.007 0.547+0.024 0.535+0.012
TDC.AqSol () MAE 1.203+0.019 0.827+0.047 1.023+0.023 0.947+0.016 0.907+0.020 0.776-+0.008 1.026+0.020 1.040-+0.045
TDC.BBB (1) AUROC 0.823+0.015 0.889+0.016 0.781+0.030 0.836-£0.009 0.842+0.016 0.855+0.011 0.892+0.012 0.897+0.004
TDC.PPBR () MAE 12.848+0.362 9.994+0319 11.10640358 | 9.292+0.384  10.194+0.373 9.373+0.335 10.075+0.202 9.445+0.224
TDC.VD (1) Spearman | 0.493+0.011 0.561+0.025 0.226+0.114 0.258+0.162 0.457+0.050 0.241+0.145 10.55940.019 0.485+0.092|
TDC.CYP2D6-I (1) | AUPRC 0.587+0.011 0.616+0.007 0.544+0.053 0.627+0.009 0.616+0.020 0.646+0.014 0.721+0.009 0.739-0.005
TDC.CYP3A4-1 (1) | AUPRC 0.827-+0.009 0.829-+0.007 0.821+0.003 0.849-+0.004 0.840-+0.010 0.851+0.006 0.902-+0.002 0.904-+0.002
TDC.CYP2C9-1 (1) | AUPRC 0.715+0.004 0.742+0.006 0.713+0.006 0.739+0.010 0.735+0.004 0.749+0.004 0.829+0.003 0.839-£0.003
TDC.CYP2D6-S (1) | AUPRC 0.671+0.066 0.677+0.047 0.485+0.037 0.572+0.062 0.617+0.039 0.574+0.030 0.704+0.028 0.736-+0.024
TDC.CYP3A4-S (1) | AUROC 0.633+0.013 0.639+0.012 0.662+0.031 0.578+0.020 0.590+0.023 0.576+0.025 0.582-+0.021 0.609+0.025
TDC.CYP2C9-S (1) | AUPRC 0.380-+0.015 0.360-0.040 0.367+0.059 0.359-+0.059 0.344+0.051 0.375+0.032 0.381+0.045 0.392-+0.026
TDC.Half_Life (1) Spearman | 0.329+0.083 0.184+o0.111 0.038+0.138 0.177+0.165 0.239-+0.100 0.085-+0.068 0.151+0.068 0.129+0.114
TDC.CL-Micro (1) | Spearman | 0.492+0020 [U.58620.014] 0.252+0.116 0.529-+0.015 0.532+0.033 0.365+0.055 [0.585+0.034 0.578+0.007|
TDC.CL-Hepa (1) Spearman | 0.272+0.068 0.382+0.007 0.235+0.021 0.401+0.037 0.366-0.063 0.289-+0.022 0.413+0.028 0.439-+0.026
TDC.hERG (1) AUROC 0.73640.023 0.754+0037 | 0.722+003¢  0.73840038 0.825+0.007 [07778%0.046 0.756+0.023|
TDC.AMES (1) AUROC 0.794+0.008 0.823+0.011 0.776+0.015 0.823+0.006 0.818+0.010 0.814+0.008 0.842-+0.008 0.837+0.009
TDC.DILI (1) AUROC 0.832+0.021 0.875+0.019 0.792+0.016 0.851+0.026 0.859-+0.033 0.886+0.015 0.919-+0.008 0.861+0.018
TDC.LD50 ({) MAE 0.649+0.019 0.678+0.003 0.675+0.011 0.667+0.020 0.649+0.026 0.678+0.012 0.685+0.025 0.669+0.030

* Finding 2: Expert-curated methods, such as

Morgan'’s fingerprints can outperform graph RL

methods on some endpoints
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Results: ADMET prediction (3/3

Raw Feature Type |  Expert-Curated Methods | SMILES | Molecular Graph-Based Methods (state-of-the-Art in ML)
Dataset | Metric | Morgan [31] RDKit2D [24] | CNN[18] | NeuralFP [7] ~ GCN [23]  AttentiveFP [43] | AttrMasking [16] ~ContextPred [16]
\ # Params. \ 1477K 633K \ 227K \ 480K 192K 301K 2067K 2067K
TDC.Caco2 ({) MAE 0.908-£0.060 0.393-+0.024 0.446+0.036 0.530-+0.102 0.599-+0.104 0.401+0.032 0.546-+0.052 0.502+0.036
TDC.HIA (1) AUROC 0.807+0.072 0.972+0.008 0.869-+0.026 0.943+0.014 0.936-+0.024 0.974+0.007 0.978-+0.006 0.975+0.004
TDC.Pgp (1) AUROC 0.880+0.006 0.918=+0.007 0.908=+0.012 0.902+0.020 0.895+0.021 0.892+0.012 0.929+0.006 0.923+0.005
TDC.Bioav (1) AUROC 0.581+0.086 0.672+0.021 0.613+0.013 0.632+0.036 0.566+0.115 0.632+0.039 0.577+0.087 0.671+0.026
TDC.Lipo () MAE 0.70140.009 0.574=+0.017 0.743+0.020 0.563+0.023 0.541+0.011 0.572+0.007 0.547+0.024 0.535+0.012
TDC.AqSol () MAE 1.203+0.019 0.827+0.047 1.023+0.023 0.947+0.016 0.907+0.020 0.776-+0.008 1.026+0.020 1.040-+0.045
TDC.BBB (1) AUROC 0.823+0.015 0.889+0.016 0.781+0.030 0.836-£0.009 0.842+0.016 0.855+0.011 0.892+0.012 0.897+0.004
TDC.PPBR () MAE 12.848+0.362 9.994+0319 11.10640358 | 9.292+0.384  10.194+0.373 9.373+0.335 10.075+0.202 9.445+0.224
TDC.VD (1) Spearman | 0.493+0.011 0.561+0.025 0.226+0.114 0.258+0.162 0.457+0.050 0.241+0.145 0.559+0.019 0.485+0.092
TDC.CYP2D6-I (1) | AUPRC 0.587+0.011 0.616+0.007 0.544+0.053 0.627+0.009 0.616+0.020 0.646+0.014 0.721+0.009 0.739-0.005
TDC.CYP3A4-1 (1) | AUPRC 0.827-+0.009 0.829-+0.007 0.821+0.003 0.849-+0.004 0.840-+0.010 0.851+0.006 0.902-+0.002 0.904-+0.002
TDC.CYP2C9-1 (1) | AUPRC 0.715+0.004 0.742+0.006 0.713+0.006 0.739+0.010 0.735+0.004 0.749+0.004 0.829+0.003 0.839-£0.003
TDC.CYP2D6-S (1) | AUPRC 0.671+0.066 0.677+0.047 0.485+0.037 0.572+0.062 0.617+0.039 0.574+0.030 0.704+0.028 0.736-+0.024
TDC.CYP3A4-S (1) | AUROC 0.633+0.013 0.639+0.012 0.662+0.031 0.578+0.020 0.590+0.023 0.576+0.025 0.582-+0.021 0.609+0.025
TDC.CYP2C9-S (1) | AUPRC 0.380-+0.015 0.360-0.040 0.367+0.059 0.359-+0.059 0.344+0.051 0.375+0.032 0.381+0.045 0.392-+0.026
TDC.Half_Life (1) Spearman | 0.329+0.083 0.184+o0.111 0.038+0.138 0.177+0.165 0.239-+0.100 0.085-+0.068 0.151+0.068 0.129+0.114
TDC.CL-Micro (1) | Spearman | 0.492+0.020 0.586-+0.014 0.252+0.116 0.529-+0.015 0.532+0.033 0.365+0.055 0.585-+0.034 0.578+0.007
TDC.CL-Hepa (1) Spearman | 0.272+0.068 0.382+0.007 0.235+0.021 0.401+0.037 0.366-0.063 0.289-+0.022 0.413+0.028 0.439-+0.026
TDC.hERG (1) AUROC 0.736-+£0.023 0.841-+0.020 0.754+0.037 0.722+0.034 0.738-+0.038 0.825+0.007 0.778+0.046 0.756+0.023
TDC.AMES (1) AUROC 0.794+0.008 0.823+0.011 0.776+0.015 0.823+0.006 0.818+0.010 0.814+0.008 0.842-+0.008 0.837+0.009
TDC.DILI (1) AUROC 0.832+0.021 0.875+0.019 0.792+0.016 0.851+0.026 0.859-+0.033 0.886+0.015 0.919-+0.008 0.861+0.018
TDC.LD50 ({) MAE 0.649+0.019 0.678+0.003 0.675+0.011 0.667+0.020 0.649+0.026 0.678+0.012 0.685+0.025 0.669+0.030

* Finding 3: Pre-training can be helpful. Pre-trained
graph RL models yield strongest predictors overall
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Setup: Distribution shifts and
generalization

DTl datasets are typically split into train/validation/test sets in
a random manner. ldentifying drug targets in the real-world,
however, requires generalization to novel drugs and proteins.

-

A domain generalization problem!

& & &
&
& Ny

Train-Valid: DTls Patented in 2013-18 Test: DTls Patented in 2019-21
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Results
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ERM (Empirical Risk Minimization) is a
standard training strategy where errors
across all domains are minimized.

State-of-the-art domain generalization
methods: MMD (Maximum Mean
Discrepancy) optimizes similarities between
predicted and observed values using
maximum mean discrepancy Score across
domains. GORAL (Correlation Alignment)
matches the mean and covariance of
features across domains. IRM (Invariant Risk
Minimization) optimizes features using a
cross-domain optimized linear classifier.
GroupDRO (distributionally robust neural
networks for group shifts) optimizes ERM
and adjusts weights of domains with larger
errors. MTL (marginal transfer learning)
concatenates original features with an
augmented vector of marginal feature
distributions. ANDMask masks gradients that
have inconsistent signs in the corresponding
weights across domains

« Finding 1: OOD (Out-of-distribution) performance drops from 33.9%-43.6%.

« Finding 2: Standard supervised models have similar performance as state-

of-the-art domain generalization methods.

38



Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Molecule generation

/g:::i/ — Oracle ‘ Score ‘

Generated I |
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Setup: High-capacity oracles (1/2)

Real-world oracles (e.g., bioassays and experimental validation
of predictions) are expensive and resource-intensive

¥

Molecule generation given a small budget,
..e., limited number of oracle calls!

Previous oracle Docking oracle

\ " b
NH—(i/ED 0.948 (! QED: 0.948 VS l >/

QED: 0.948 /

Milliseconds in RDKit Minutés in Vina
SOTA methods call Restricted to thousands

millions of times! of calls only!
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Setup: High-capacity oracles (2/2)

Optimizing for a single target property is not sufficient. It does
not generate molecules with many drug-like properties

¥

We need effective indicators of performance of these
methods In real-world scenarios

Established performance metrics:
Top100/Top10/Top1 docking scores, Diversity, Novelty

Additional performance metrics:
Synthesizability with Molecule.One*
% Pass filters (PAINS/SureChEMBL/Glaxo)

*https://molecule.one
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Results: Docking molecule
generation (1/3

Method Category Domain-Specific Methods State-of-the-Art Methods in ML
Metric | Best-in-data | # Calls | Screening Graph-GA [20] | LSTM [34] GCPN [45] MoIDQN [46] MARS [42]
# Params. \ - - 0 0 3149K 18K 2694K 153K
Top100 () -12.080 -9.693+0.019 -11.224+0.484 -9.971+0.115 -9.053+0.080 -6.738+0.042 -8.22440.1% |
Top10 () -12.590 -10.777+0.189  -12.400+0.782 | -11.163+0.141 -11.027+0273  -7.506+0.085 -9.843+0.068
Topl () -12.800 -11.500+0432  -13.233+0.713 -11.967+0205 -12.033+0.618 -7.800+0.042  -11.100+0.141
Diversity (1) 0.864 1000 0.873+0.003 0.815+0.046 0.871+0.004 0.913-t0.001 0.904+0.001 0.871+0.004
Novelty (1) - - 1.00040.000 1.000+0.000 1.000+0.000 1.0004-0.000 1.000+0.000
Y0Pass (T) 0.780 0.757+0.026 0.777+£0.096 0.777+0.026 0.170+0.022 0.033+0.005 0.563+0.052
Top1 Pass ({) -11.700 -9.167+0.047 -10.600+0.374 -9.367+0.094 -8.167+0.047 -6.450-+0.085 -7.367+0.205
ml (}) 5.100 5.527+0.780 7.6950.909 4.818+0.541 10.000=0.000 10.000=0.000 6.037+0.137
Top100 ({) -12.080 -10.542+0.035 -14.811+0.413 -13.017+0385 -10.045+0226  -8.23640.089 -9.509+0.035
Top10 (}) -12.590 -11.483+0.056 -15.930+0.336 -14.030+0.421  -11.483+0.581 -9.348+0.188 -10.693+0.172
Topl () -12.800 -12.100+0356  -16.533+0.309 -14.533+0525  -12.300+0.993 -9.990+0.194  -11.433+0.450
Diversity (1) 0.864 5000 0.872+0.003 0.626-+0.092 0.740+0.056 0.922-£0.002 0.893-+0.005 0.873+0.002
Novelty (1) - - 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000
%0Pass (T) 0.780 0.683+0.073 0.393+0.308 0.257+0.103 0.167+0.045 0.023+0.012 0.527+0.087
Top1 Pass ({) -11.700 -10.100+0.000  -14.267+0.450 -12.533+0403  -9.367+0.170 -7.980+0.112 -9.000+0.082
ml ({) 5.100 5.610+0.805 9.669+0.468 5.826+1.908 10.000+0.000 10.000+0.000 7.073+0.798

Finding 1: Models perform poorly in challenging yet
realistic setting (i.e., they do not beat best-in-data
reference when they are given 1,000 # calls)
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Results: Docking molecule
generation (2/3

Method Category | Domain-Specific Methods | State-of-the-Art Methods in ML

Metric | Best-in-data | # Calls | Screening Graph-GA [20]|| LSTM [34] GCPN [45] MoIDQN [46] MARS [42]
# Params. \ - \ - \ 0 0 \ 3149K 18K 2694K 153K
Top100 ({) -12.080 -9.693+0.019 -11.224+0.484 -9.971+0.115 -9.053+0.080 -6.738+0.042 -8.224+0.19
Top10 () -12.590 -10.777+0.189 | -12.400+0.782 || -11.163+0.141 -11.027+0273  -7.506+0.085 -9.843+0.068
Topl () -12.800 -11.500+0.432 | -13.233+0.713 -11.967+0205 -12.033+0.618 -7.800+0.042  -11.100+0.141
Diversity (1) 0.864 1000 0.873+0.003 0.815+0.046 0.871+0.004 0.913-t0.001 0.904+0.001 0.871+0.004
Novelty (1) - - 1.000-£0.000 1.000-0.000 1.000-0.000 1.000-0.000 1.000-0.000
Y0Pass (T) 0.780 0.757+0.026 0.777+£0.096 0.777+0.026 0.170+0.022 0.033+0.005 0.563+0.052
Top1 Pass ({) -11.700 -9.167+0.047 -10.600+0.374 -9.367+0.094 -8.167+0.047 -6.450-+0.085 -7.367+0.205
ml (}) 5.100 5.527+0.780 7.6950.909 4.818+0.541 10.000=0.000 10.000=0.000 6.037+0.137
Top100 ({) -12.080 -10.542+0.035 -14.811+0.413 -13.017+0385 -10.045+0226  -8.23640.089 -9.509+0.035
Top10 (}) -12.590 -11.483+0.056 -15.930+0.336 -14.030+0.421  -11.483+0.581 -9.348+0.188 -10.693+0.172
Topl () -12.800 -12.100+03s56 | -16.533+0.309 -14.533+0525  -12.300+0.993 -9.990+0.194  -11.433+0.450
Diversity (1) 0.864 5000 0.872+0.003 0.626-+0.092 0.740+0.056 0.922-£0.002 0.893-+0.005 0.873+0.002
Novelty (1) - - 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000
%0Pass (T) 0.780 0.683+0.073 0.393+0.308 0.257+0.103 0.167+0.045 0.023+0.012 0.527+0.087
Top1 Pass ({) -11.700 -10.100+0.000 | -14.267+0.450 -12.533+0403  -9.367+0.170 -7.980+0.112 -9.000+0.082
ml ({) 5.100 5.610+0.805 9.669+0.468 5.826+1.908 10.000+0.000 10.000+0.000 7.073+0.798

* Finding 2: Graph-GA method with O learnable

parameters performs the best. SOTA ML methods
report excellent results when resources are unlimited
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Results: Docking molecule
generation (3/3

Method Category Domain-Specific Methods State-of-the-Art Methods in ML
Metric | Best-in-data | # Calls | Screening Graph-GA [20] | LSTM [34] GCPN [45] MoIDQN [46] MARS [42]
# Params. - - 0 0 3149K 18K 2694K 153K
Top100 ({) -12.080 -9.693+0.019 -11.224+0.484 -9.971+0.115 -9.053+0.080 -6.738+0.042 -8.224+0.19
Top10 () -12.590 -10.777+0.180  -12.400+0.782 | -11.163+0.141 -11.027+0273  -7.506+0.085 -9.843+0.068
Topl () -12.800 -11.500+0432  -13.233+0.713 -11.967+0205 -12.033+0.618 -7.800+0.042  -11.100+0.141
Diversity (1) 0.864 1000 0.873+0.003 0.815+0.046 0.871+0.004 0.913-t0.001 0.904+0.001 0.871+0.004
Novelty (1) - - 1.0004+0.000 1.0004+0.000 1.000+0.000 1.000+0.000 1.0004+0.000
%Pass (1) 0.780 0.757+0.026 | 0.777+0.09 0.777+0.026 0.170+0.022 0.033+0.005 0.563+0.052 |
Top1 Pass ({) -11.700 -9.167+0.047 -10.600+0.374 -9.367+0.094 -8.167+0.047 -6.450-+0.085 -7.367+0.205
ml (}) 5.100 5.527+080 | 7.695+0.909 4.818+0.541 10.000+0.000 10.000+0.000 6.037+0.137 |
Top100 ({) -12.080 -10.542+0.035 -14.811+0.413 -13.017+0385 -10.045+0226  -8.23640.089 -9.509+0.035
Top10 ({) -12.590 -11.483+0.056 -15.930+0.336 -14.030+0.421  -11.483+0.581 -9.348+0.188 -10.693+0.172
Topl () -12.800 -12.100+0356  -16.533+0.309 -14.533+0525  -12.300+0.993 -9.990+0.194  -11.433+0.450
Diversity (1) 0.864 5000 0.872+0.003 0.626-+0.092 0.740+0.056 0.922-£0.002 0.893-+0.005 0.873+0.002
Novelty (1) - - 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000
%0Pass (T) 0.780 0.683+0.073 | 0.393+0.308 0.257+0.103 0.167+0.045 0.023+0.012 0.527+0.087 |
Top1 Pass ({) -11.700 -10.100+0.000  -14.267+0.450 -12.533+0403  -9.367+0.170 -7.980+0.112 -9.000+0.082
ml (}) 5.100 5.610+0805 | 9.669+0.468 5.826+£1.908  10.000+0.000  10.000-0.000 7.073+0.798 |

* Finding 3: The greater the number of calls, the worse
the quality of generated molecules (drug-likeliness)
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I\/Iachme \eamlng
foundation for therapeutics

|[dentify meaningful Design

tasks and datasets LVN . Al/ML methods

| T L
Domain THERAPEZUTICS S

scientists DATA COMMONS scientists

Facilitate algorithmic and scientific advance
In therapeutics

TDC supports the development of novel ML theory and methods, with a strong
bent towards developing the mathematical foundations of which ML algorithms are

most suitable for drug discovery applications and why

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurlPS, 2021
Machine Learning Foundation for Drug Discovery and Development, Nature Chemical Biology, (in press), 2022 45



®  Formulating Meaningful
22, Therapeutics ML Tasks

!

https://tdcommons.ai
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Lifecycle of therapeutics ML
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Comparing with the
State-of-the-art
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurlPS, 2021
Machine Learning Foundation for Drug Discovery and Development, Nature Chemical Biology, (in press), 2022
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Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurlPS, 2021
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Key lakeaways

= TDC provides an artificial intelligence foundation for therapeutic
science

= Python package: Tools, libraries, leaderboards, and resources, including
data functions, strategies for systematic model evaluation, meaningful
data splits, data processors, and molecule generation oracles

= Al-ready datasets cover a range of therapeutic modalities, including
small molecules, biologics, antibodies, peptides, miRNAs, and gene
therapies
= Solvable Al tasks cover all stages of drug discovery:
— Target discovery: Tasks to identify candidate therapeutic targets

— Activity modeling: Tasks to screen and generate individual or
combinatorial candidates with high binding activity

— Efficacy and safety: Optimize signatures indicative of safety and efficacy
— Manufacturing: Tasks on the manufacturing and synthesis of therapeutics

=  Resources
= \Website: https://tdcommons.ai

= Paper: https://arxiv.org/abs/2102.09548
= GitHub: https://github.com/mims-harvard/TDC



https://tdcommons.ai/
https://arxiv.org/abs/2102.09548
https://github.com/mims-harvard/TDC

Applications of graph representation learning on...

THERAPEUTICS

1.  Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Applications of graph representation learning on...

THERAPEUTICS

1.  Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

ARTICLE | VOLUME 180, ISSUE 4, P688-702.E13, FEBRUARY 20, 2020

A Deep Learning Approach to Antibiotic Discovery

10

Jonathan M. Stokes « Kevin Yang '© « Kyle Swanson ... Tommi S. Jaakkola * Regina Barzilay 2

James J. Collins 2 '’ Show all authors ® Show footnotes

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Antibiotic discovery timeline

1953: Glycopeptides, Nitroimidazoles, Streptogramins «¢

1952: Macrolides <«
1950: Pleuromutilins <
1948: Cephalosporins <«

1947: Polymyxins, Phenicols <

1946: Nitrofurans <
1945: Tetracyclines €
1943: Aminoglycosides, Bacitracin (topical) <

1932: Sulfonamides <
1928: Penicillins <

P> 1955: Cycloserine, Novobiocin
P> 1957: Rifamycins

P 1961: Trimethoprim
P 1962: Quinolones, Lincosamides, Fusidic acid
P> 1949: Fosfomycin

P 1971: Mupirocin
P 1976: Carbapenems
P> 1978: Oxazolidinones
P 1979: Monobactams
P 1987: Lipopeptides

© ReAct Group 2015

Natural product mining

DISCOVERY VOID

Small compound
screening
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GNN to learn molecular structure

Chemical landscape

arge scale prediction
(upper limit 108 +)

Directed message L S “
passing neural network “
\ T

Conventional small

molecule screening
4 q&v \
SEeTAifig Set lterative Chemical screening
4
(10* molecules) model (upper limit 10° - 10°)
l re-training

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

\

_J \_

Growth

/

—3 | identification | €<—
[antibiotic] ) & optimization

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.
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Experimental setup

Training Dataset Empirical Validation
(Human Medicines and Natural Products) (Broad Repurposing Hub)
Ho~ V “L; 0 . 12 1
1 J 1 R G : 224 5
o(;.q L yop ¥ z o ; ? g é) o 0 -7 Predicted molecules i st
Input L Output
Data: 2,335 molecules (human Data: 6,111 molecules (at various
medicines and natural products) stages of investigation for human
screened for growth inhibition diseases) in Broad Repurposing Hub

Task: Test top 99 predictions &
prioritize based on similarity to known
antibiotics or predicted toxicity

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.
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Results

Halicin was developed to be an anti-diabetic drug, but the development was

discontinued due to poor results in testing.
-A_‘f&v e .

Halicin predicted to
be antibacterial

fraining set
Broad library
halicin

Halicin against £ 0s-
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T T T T
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2
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L} L T Al 1
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.
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Results

Halicin’s efficacy in murine models of infection

B
0.7+ 10°-
06 10°4
054 1074
0.4+ g 10°% 5
hr
0.3+ & 10°+
4 | 6hr
021 10" ghr
0.1+ 10°4 A. baumannii CDC 288
A. baumannii COC 288 , | nutrient deplete
0 1 L) L] L L] L] L] 1 10 T 1] L] 1 1
10° 10* 10° 107 10" 10° 10' 10% 10° 10% 10" 10° 10" 10° 10°
[halicin] pg/ml [halicin] pg/ml
E
1 -
vehic ||
0.8
06 ﬁ 1 metronidazole
0.4 4
disrupt halicin
024 colonization infect
resistance
C. difficiie 630
0 1 1 L] L] L] 1 1 1]
10° 10 10° 107 107 10" 10" 10% 10° -72 48 -24 onrs 24
[halicin] pg/ml ampicillin C. difficile treatment
200 malkg infection every 24 hrs

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.
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Key lakeaways

Directed message passing neural network model
iteratively (1) learns representations of molecules and
(2) optimizes the representations for predicting growth
Inhibition

Validated against ~6K molecules in the Broad
Repurposing Hub to identify candidate antibiotics

Halicin, initially developed to be an anti-diabetic drug
(out discontinued due to poor results in testing), is
identified and verified through experiments as a
promising antibiotic
Resources
= Paper: doi.org/10.1016/j.cell.2020.01.021
=  Chemprop resources:

— Paper: doi.org/10.1021/acs.jcim.9b00237

—  GitHub: github.com/chemprop/chemprop



https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1021/acs.jcim.9b00237
https://github.com/chemprop/chemprop

Applications of graph representation learning on...

THERAPEUTICS

1.  Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Applications of graph representation learning on...

THERAPEUTICS

1.  Molecular property prediction, drug-target interaction
prediction, molecular generation

2. Drug discovery
3. Drug repurposing

Network medicine framework for identifying
drug-repurposing opportunities for COVID-19

Deisy Morselli Gysi**<"®, italo do Valle>", Marinka Zitnik®*"!, Asher Ameli®*", Xiao Gan®*", Onur Varol*>9®, Explainer: ine Exol .
Susan Dina Ghiassian’®, J. J. Patten"®, Robert A. Davey", Joseph Loscalzo'®, and Albert-Laszlé Barabasi®Pi2 GNNExplainer: Generating Explanations
for Graph Neural Networks

’L‘w}'eg doi.org/10.1038/541467-021-21770-!
|dentification of disease treatment mechanisms Dot of Copgs oSt Uiy
through the multiscale interactome e —————

1,48

Rex Ying!  Dylan Bourgeois™*  Jiaxuan You! = Marinka Zitnik! ~ Jure Leskovec’

Camilo Ruiz® "2, Marinka Zitnik3 & Jure Leskovec

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022 58



Drugs
7,591drugs

Input Data |

Human Interactome
N = 18,508 proteins
L = 332,749 PPIs

SARS-COV2 targets

320 human proteins

4,187 drug targets

Drug Repurposing Predictions

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Rapid therapeutic innovation

= Traditional, iterative development, experimental & clinical testing,

and approval of new drugs sometimes not feasible
®  Certain therapeutic areas, public health emergencies

= (Challenge: How to compress years of work into months or even
weeks through Al, automation, and new data resources?

ThIS talk ApproaCh @® Predictions Finalized

CT415

Clinical Trials
37 Drugs

Network Diffusion (D1 - D5) 881 Negative

]

Network Proximity (P1 - P3)

Experimental Screening

E918 Outcomes

Strong 37
Weak 40
Cytotoxic 35
No-Effect 806

E74 Outcomes

Strong 11
Weak 10
Cytotoxic 14
No-Effect 39

Experimental Readout
(E918, E74)

Validation

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 .
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-
oy

»
- e )y
s el T d O

10,000

compounds

New tricks
for old drugs

Faced with skyrocketing costs for developing
new drugs, researchers are looking at ways
to repurpose older ones — and even some that @ 1 compouns

failed ininitial trials.

uol|jiq Z$ 03 uol|jiq T$~ ‘siesk 91-Z1

Phase Il FDA
approval
2 years 1-2 years

Drug discovery Preclinical Phase |

testing Phase Il

3 years 3 years
12-16 years, ~$1 billion to $2 billion

A SHﬂHTER ”MESBM.E Drug repositioning

Because most repositioned drugs have already passed the early
phases of development and clinical testing, they can potentially win
approval in less than half the time and at one-quarter of the cost. ~6 years, ~$300 million
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What drug treats what disease?

Goal: Predict what diseases a

(@] . . .

S given compound might treat Neurological

8 Shal disease

compound

Electronic
Health
Records

2

g /0] [

s

o Noncoding RNA

<

@]

O

Medical image

Graph Representation Learning in Biomedicine, Nature Biomedical Engineering, 2021 (in press), arXiv:2104.04883
Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities, Information Fusion 2019
Representation Learning for Networks in Biology and Medicine: Advancements, Challenges, and Opportunities, 2021, arXiv:2104.04883
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COVID-19 disease module

Viral-Human Human-Human Drug-Human
Protein-Protein Interaction Protein-Protein Interaction Protein-Protein Interaction

O—=e O—CO O

Viral Interactome Human Interactome

o

Viral Disease Module: Gordon et al., Nature 2020

expressed 26 of the 29 SARS-CoV2 proteins and Viral Disease Module Drug Disease Module
used AP-MS to identify 332 human proteins to

which viral proteins bind Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021
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Dataset and experimental setup

= COVID-19 repurposing knowledge graph:

= Human protein-protein interaction graph

= All U.S. approved drugs and proteins they bind to

= All common diseases and proteins they cause them
COVID-19 disease and proteins causing the disease
All approved treatments for common diseases

= Goal: Given common diseases and treatments for
them, identify candidate treatments for COVID-19
IN a zero-shot manner

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021
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Why is this task challenging”

Challenge: Generalizing to new phenomena is hard:

o Prevailing methods require abundant label information

o However, labeled examples are scarce

o Examples: Novel drugs in development, emerging
pathogens, rare diseases, hard-to-diagnose patients

What prevailing What happens in
methods assume real world

64
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Background: Few-shot learning

Meta-Training At test time, we need to build a “duck vs. dolphin
| vs. chicken” classifier. However, we have only 2
| labeled examples for each class! Few-shot

Training task 1 Trainin learning makes this possible.

Support set Support set Support set

Query set Query set Query set

An example of 2-shot 3-way image classification

Few-shot learning: Instantiation of meta learning in the field of supervised learning
K-shot N-class classification: K labeled examples for each of N classes _
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Few-shot learning for drugs

Meta—'IA'raining Meta—'[esting
( \ ( |
Training task 1 Training task2 - - - Test task 1
Support set Support set Support set
- Drug1 Drug2 Drug3 Drug7 Drug8 Drug9 No examples of
I
‘ O ‘ O O PN successful treatments
Drug4 Drug5 Drug6 Drug 10 Drilg Deep gr;aph Al approach
N=3
Query set Query set
Druga Drugb Drugc Drugd Druge Drugf Drug i
Disease 1 W Disease 2

£

Graph Meta Learning via Local Subgraphs, NeurlPS 2020 -
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Results: COVID-19 repurposing

We test each method’s ability to
1.0 EleeP grap: . recover drugs currently in clinical trials
| i for COVID-19 (67 drugs from

\/, ClinicalTrials.gov)
o 038 ]
§ The best individual ROC curves are
© 06 AL: 0.86 obtained by the GNN methods
é 0.4 — Q‘f: ‘;zlii The second-best performance is
o f Do provided by the proximity P3. Close
- 0o — paoss behind is P1 with AUC = 0.68 and
=7 — iees  AUC=0.58

P2: 0.58

_ﬂé}l —— P3:0.70
0.0 Random: 0.0 Myiffusion methods offer ROC between

0.0 0.2 0.4 0.6 0.8 1.0 0.55-0.56
False positive rate

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021
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Results: Experimental screening

CRank Drug Name 17 Celecoxib
. . 18 Betamethasone

1 Ritona

2 Islo?wiaz\ﬁjr 19 Prednisolone

3 Troleandomycin 20 Mifepristone

4 Cilostazol 21 Budesonide

5 Chloroquine 22 Prednisone

6 Rifabutin 23 Oxiconazole

7 Flutamide 24 Megestrol acetate

8 Dexamethasone 25 Idelalisib

9 Rifaximin 26 Econazole

10 Azelastine n7 f"“‘“’"*“'j

1 Crizotini Predicted lists of drugs
New algorithms:

Prioritizing Network Communities, Nature Communications 2018
Subgraph Neural Networks, NeurlPS 2020
Graph Meta Learning via Local Subgraphs, NeurlPS 2020

Results: 918 compounds screened for their efficacy
against SARS-CoV-2 in VeroE6 & human cells:

= We screened in human cells the top-ranked

drugs, obtaining a 62% success rate, in contrast
to the 0.8% hit rate of nonguided screenings

DR e ol R =IB/A " [his is an order of magnitude higher hit rate
among top 100 drugs than alternative approach

National Emerging Infectious

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021
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Explaining machine predictions

Key idea: ¢

= Summarize where in the data the model “looks” for
evidence for its prediction

* Find a small subgraph most influential for the prediction

GNN model training and predictions Explaning GNN'’s predictions

A{\ “Basketball”
L]

7; = “Basketball” y; = “Sailing”

...................

GNNEXxplainer

""" ._ m

“Sailing” 7~—4—=

Approach to generate explanations
for graph neural networks based

on counterfactual reasoning
GNNExplainer: Generating Explanations for Graph Neural Networks, NeurlPS 2019 .
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GNNExplainer: key idea

= |nput: Given prediction f(x) for node/link x

= Qutput: Explanation, a small subgraph M, together
with a small subset of node features:
= M, is most influential for prediction f(x)

= Approach: Optimize mask M, in a post-hoc manner

= |ntuition: If removing v from
the graph strongly
decreases the probabillity of
prediction = v is a good
counterfactual explanation
for the prediction

Node feature Feature excluded
vector from explanation

GNN Explainer: Generating Explanations for Graph Neural Networks, NeurlPS 2019
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Example of explanations

"Will rosuvastatin treat hyperlipidemia”? \What
IS the disease treatment mechanism?”

Rosuvastatin Hyperlipoproteinemia Type Il

Functional
. Pathways
(n=19,798)

system
3 "
% organ N .\

&P tissue \ Cholesterol 7
\ \ Biosynthesis " 4
@ il \ \ Cholesterol \ N 4
DN | Homeostasis N
\\ WA ‘ [
@ | Proteins R "‘\

(n=17,660)

7 o 8
\ f ik
\ N \
N H >

\: * APOE
: "-’l\‘,“
li’) ‘
5 {
A Drugs V. / \ \:
(n=1.661) 7 i
[ )]
/ \ 3 & Hyperlipoproteinemia
A | Diseases
(n = 840) 3

A
3

Rosuvastatin

+ reg. of triglyceride
catabolic proc. FASN

triglyceride homeostasis .

cholesterol homeostasis

triglyceride metabolic
roc.

- reg. of cholesterol

biosynthetic proc.
cholesterol biosynthetic I reg. of cholesterol

proc. I biosynthetic proc.

+ reg. of cholesterol

biosynthetic proc. - reg. of protein

homotetramerization
- reg. of protein
tetramerization

protein tetramerization protein oligomerization

GNNExplainer: Generating Explanations for Graph Neural Networks, NeurlPS 2019

Discovery of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications, 2021
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S5 &l
=] g/!

Predictions= &S » Network drugs

= /6/77 drugs that successfully reduced viral infection
do not bind proteins targeted by SARS-CoV-2:

= These drugs rely on network-based actions that cannot
be identified by docking-based strategies

yd \ Network drugs (D3)

/
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Key lakeaways

= Approach to identify repurposable drugs for future pathogens
and neglected diseases underserved by the costs and
extended timeline of de novo drug development

= Algorithms we deployed algorithms relying on artificial
Intelligence, network diffusion, and network proximity:

= No single predictive algorithm offers consistently reliable outcomes
across all datasets and metrics

= Multimodal approach fused predictions of all algorithms, finding
that a consensus among different predictive methods and
consistently exceeding performance of the best individual algorithm

= Top-ranked drugs screened in human cells yield a 62% success

rate in contrast to the 0.8% hit rate of nonguided screenings
= Resources

=  Paper: https://www.pnas.org/doi/full/10.1073/pnas.2025581118

=  \Webinar: https://www.youtube.com/watch?v=jS8 _WViNj4

= GitHub:
—  COVID-19 repurposing: https://qgithub.com/Barabasi-Lab/COVID-19
—  Multimodal fusion: https://github.com/mims-harvard/crank
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Graph RL for therapeutics

Summary

= TDC: Open-science initiative with Al-ready datasets, Al tasks, and
benchmarks for therapeutic science

* Deep learning for antibiotic discovery: Generative methods can
examine several orders of magnitude larger chemical spaces than
standard chemical libraries and generate compounds with desired
drug-like properties

=  COVID-19 drug repurposing: When designing new drugs from
scratch is not feasible, repurposing offers an enticing alternative.

Few-shot methods can identify promising therapeutic opportunities
for diseases with few treatment options

Poll Question

What is your dream Al/ML-ready dataset and Al/ML task for
therapeutics? Fill in the blank

Q&A Session



Applications of graph representation learning on...

PRECISION MEDICINE

1. Histopathology images of tissue biopsies
2. Patient electronic health records
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Applications of graph representation learning on...

PRECISION MEDICINE

1. Histopathology images of tissue biopsies
2. Patient electronic health records

E mB Coyeee 2 O IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 4, APRIL 2022 757
NPSS P ocessing

Pathomic Fusion: An Integrated Framework for
Fusing Histopathology and Genomic Features
for Cancer Diagnosis and Prognosis

Richard J. Chen, Ming Y. Lu, Jingwen Wang, Drew F. K. Williamson, Scott J. Rodig, Neal I. Lindeman,
and Faisal Mahmood ™, Member, IEEE

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Motivation

S

*

Cancer diagnosis 1. Current paradigm
requires subjective &
visual assessment by
pathologists

2. Existing methods
only consider single
modalities at a time

1 Histopathology slides Genomic sequencing
(tumor microenvironment) (genotypic expression)

7
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Overview of Pathomic Fusion

Tensor Fusion

Convolutional Neural Network

Sy mre

Graph Convolutional Network

Proportion Surviving
o
b

o 510 15
Time (years)

Diagnosis
Prognosis
Treatment Response
Treatment Resistance
Clinical Trial Feasibility

>(O— hfusion — hz 03¢ hn 03¢ hg
ot

Gating-Based

Genomic Profile Feed-Forward Network Attention Mechanism

Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for

Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020. .



Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

GCN for whole slide images

Whole Slide Image Region-of-Interest Nuclei Segmentation Cell Spatial Graph

Cox Layer

Hazard

Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for

Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020. -
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Experimenta\ setup

BN
Sl IDHmut ATc (II)
2 1915 Days &= )

Data

* 470 paired samples

* 20 x 1024 x 1024 Histology regions of
interest (ROIs) (1-3 per patient)

* 1 Mutation, 79 CNV, 240 RNA-Seq

Experiments
* Compare to WHO Grade + Subtype
e 15-Fold CV

q&

“ G2, “4 g ¥
3506 Days 9 : ‘\ 2727 Days ® !
NE .~m-¢; "”-. y
ST €

TCGA-BP-4165a9

g
o B

Data

* 417 paired samples

* 40 x 512 x 512 Histology regions of interest
(ROIs) (3 per patient)

* 117 CNV, 240 RNA-Seq

Experiments
* Compare to Fuhrman Grade
* 15-Fold CV

Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for

Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020.
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Results

Genomic Feature Local Explanation
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020. o
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Results

Genomic SNN Pathomic Fusion
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Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for
Cancer Diagnosis and Prognosis, IEEE Transactions on Medical Imaging, 2020. o



Key lakeaways

= Pathomic Fusion is

Objective and multimodal

Interpretable

Adaptable to any type or combination of modalities
Locally and globally interpretable

Reproducible and publicly available

= Resources

Paper: ieeexplore.ieee.org/document/9186053

GitHub: github.com/mahmoodlab/PathomicFusion

Talk: youtube.com/watch?v=TriGEUVX5YE

Synthetic dataset: doi.org/10.1038/s41551-021-00751-8



https://ieeexplore.ieee.org/document/9186053
https://github.com/mahmoodlab/PathomicFusion
https://www.youtube.com/watch?v=TrjGEUVX5YE
https://doi.org/10.1038/s41551-021-00751-8

Applications of graph representation learning on...

PRECISION MEDICINE

1. Histopathology images of tissue biopsies
2. Patient electronic health records

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022



Applications of graph representation learning on...

PRECISION MEDICINE

1. Histopathology images of tissue biopsies

2. Patient electronic health records

Journal of Biomedical Informatics 127 (2022) 104000

Contents lists available at ScienceDirect

Journal of Biomedical Informatics
ol T B

ELSEVIER journal homepage: www.elsevier.com/locate/yjbin

MedGCN: Medication recommendation and lab test imputation via graph
convolutional networks

Chengsheng Mao, Liang Yao, Yuan Luo

Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022
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Motivation

Incoming patient Hospital Mediication
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Overview of MedGCN
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MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.
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MedGCN Message Propagation
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MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.
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Experimental setup

NMEDW
#E: 1260; #P: 865; #L: 197, #M: 57
Matrix Size Edges Sparsity Values
Apxp 1260 x 865 1260 99.88% binary: 0, 1
Agpxr 1260 x 197 43806  82.35% continuous: 0-1
Apxym 1260 x 57 2475 96.55% binary: 0, 1
MIMIC-III
#E: 18190; #P: 15153; #L: 219, #M: 117
Matrix Size Edges Sparsity Values
Agpxp 18190 x 15153 18190 99.99% binary: 0, 1
Apxr 18190 x 219 1029964  68.96% continuous: 0-1
Apxy 18190 x 117 23395 98.68% binary: 0, 1

MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022. .
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Results

Medication Recommendation
Methods | LRAP MAP@2 Methods | LRAP | MAP@2
MedGCN (ours) . 7588+.0028 .75584-.0035 MedGCN (ours) .83494-.0008 | .8069+.0022
MedGCN-ind (ours) 74914+.0067*  .75584+.0073 MedGCN-ind (ours) .8345+.0007 .80704+.0029
747T7+.0032%  .74574.0046* MedGCN-Med (ours) .83464-.0005 .80614-.0020

MedGCN-Med (ours)
MLP

.7331+.0126*

.6965+.0113*

MLP
GBDT
RF

LR
SVM
CC

.8325+.0003*
.5793+.0001*
.8215+.0007*
.3367*
.6642*
.7660+.0005*

.8030+.0030*
.5019+.0002*
.8030+.0011*
.1839*
.6146*
.7153+.0003*

Lab Test Imputation

GBDT .7120+.0018*  .6864+.0023*

RF .6872+.0072*%  .7055+.0068*

LR 5325 4133

SVM .4324%* .3353*

cc 6276+.0116% .6182+.0159*
Methods MSE
MedGCN (ours) .0229+.0025

MedGCN-ind (ours)
MedGCN-Lab (ours)
MICE

MGCNN

GCMC
GCMCHFEAT

.02644-.0034*
.0254+.0003*
.04744.0010*
.0369+.0009*
.04264.0025*
.0359+.0030*

Methods

MSE

MedGCN (ours)
MedGCN-ind(ours)
Med GCN-Lab(ours)
MICE

MGCNN

GCMC
GCMCHFEAT

.0140+.0002
.01434.0002*
.0143+.0001*
.0146+.0001*
.04134.0048*
.02964.0004*
.02904.0001*

MedGCN: Medication recommendation and lab test imputation via graph convolutional networks, JBI, 2022.
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Key lakeaways

= MedGCN

= Incorporates complex associations between
multiple medical entities (e.g., patients, labs,
encounters, medications)

= Extends general GCN model to heterogeneous
graphs and missing feature values for medical

settings
= | earn multiple tasks via cross regularization

* [sinductive to efficiently generate representations
for new data

= Resources
= Paper: doi.org/10.1016/].jbi.2022.104000
= GitHub: github.com/mocherson/MedGCN



https://doi.org/10.1016/j.jbi.2022.104000
https://github.com/mocherson/MedGCN

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Why are preC|S|or medicine
applications so challenging”

Methods presented so far optimize for accuracy

Accuracy alone is no longer enough f/
Life or death decisions S = B
= Need robust algorithms =y @ﬁf
= Ensure that models behave responsibly TN~
= Ensure that models are trustworthy Hé%f;;ltgg:s

= Checks and balances built into ML deployment

Other criteria are important too:

= Explainable predictions and interpretable models
= Privacy-preserving, causal, and robust predictions
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Towards fair & stable GNNs (1/3)

= As the representations output by GNNs are
considered for real-world implementation, it is
important that representations are fair and stable

= NIFTY (uNIfying Fairness and stabiliTY) is a novel
framework:

= |t can be used with any GNN to learn fair and stable
representations
= |t develops:

= an objective function that simultaneously accounts for fairness
and stability

= a layer-wise weight normalization using the Lipschitz constant to
enhance neural message passing in GNNs

= Theoretical proved that NIFTY promotes counterfactual
fairness and stability in the resulting representations

Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021 o
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Code and datasets: https://zitniklab.hms.harvard.edu/projects/NIFTY

Towards fair & stable GNNs (2/3)

= NIFTY learn node representations that

il G’aph s are both fair and stable
X[L)abel 2d = |nvariant to sensitive attribute value
rop edge . .
\ s (3): = Invariant to perturbations of the graph
“ \ [ ] {female,male} structure and non-sensitive attributes
[ l = NIFTY’s objective function jointly
Node/Edge Perturbatlon 5 Counterfactual Graph optimizes for fairness and stability:
5 = Maximize similarity between:
= Representations of original nodes
= Representation of nodes in augmented graph
[] \ H \ = Augmented graph is generated by:
[ ] [ ] = Slightly perturbing original node attributes
; . and edges
; ; ; = Considering counterfactuals of the original
' ' ' nodes where the value of the sensitive
[ maximize similarity between representations of u, i, and %* ] attribute is modified

Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021 o


https://zitniklab.hms.harvard.edu/projects/NIFTY
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Code and datasets: https://zitniklab.hms.harvard.edu/projects/NIFTY

Towards fair & stable GNNs (3/3)

(a) German credit graph (b) Recidivism graph (c) Credit defaulter graph
30 20 25
2 5(5) 5 15 520
0]
E 15 g 10 E 15 ‘
€10 £ M €10
- S5 5 == 5
5 = B @ N %
20 50 60
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z° o 23 240
310 g _ =+ [ 530
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[ SAGE [E3 NIFTY-SAGE [ INFOMAX I NIFTY-INFOMAX

Figure 2: Unfairness (top) and instability (bottom) error rates for five GNNs and their NIFTY counterparts. NIFTY-enhanced
GNN s give fairer and more stable predictions than their unmodified counterparts across all three datasets and five GNNs.

Towards a Unified Framework for Fair and Stable Graph Representation Learning, UAI 2021
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Graph RL for precision medicine

sSummary

= Pathomic Fusion: Applies a graph convolutional
network to represent & integrate histopathology slides
with genomic features for patient cancer diagnosis

= MedGCN: Simultaneously represents the complexity
of relationships between patients, encounters, labs,
and medications while imputing missing lab tests’
values to recommend medications for patients

Poll Question

What other applications in precision medicine require (or
should require) ethical considerations? Fill in the blank

Q&A Session
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Thls Tutona\

v’ 1. Methods: Network diffusion, shallow
network embeddings, graph neural
networks, equivariant neural networks

v’ 2. Applications: Fundamental biological
discoveries and precision medicine

3. Hands-on exercises: Demos,
implementation details, tools, and tips




Towards Precision Medicine with Graph Representation Learning - bit.ly/biomedicalgml - ISMB 2022

Resources

= Books & survey papers

= William Hamilton, Graph Representation Learning
(morganclaypool.com/doi/albs/10.2200/S501045ED1V01Y202009AIM0O46)

= Lietal., Graph Representation Learning for Biomedicine
(arxiv.org/abs/2104.04883)

= Keynotes & seminars

= Michael Bronstein, “Geometric Deep Learning: The Erlangen Programme of
ML” (ICLR 2021 keynote) (youtube.com/watch?v=w6Pw4MOzMuo)

» Broad Institute Models, Inference & Algorithms: Actionable machine learning

for drug discovery; Primer on graph representation learning
(youtube.com/watch?v=9YpTYdruORQg)

= Stanford University (CS224W Lecture): Graph neural networks in
computational biology (youtube.com/watch?v=_hy9AgZxhbQ)

= Al Cures Drug Discovery Conference (youtube.com/watch?v=wNXSkISMTw8)

= Conferences & summer schools
=  |London Geometry and Machine Learning Summer School (logml.ai)
= |earning on Graphs Conference (logconference.github.io)
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Resources

= Software & packages
= PyTorch Geometric
=  NetworkX
=  Stanford Network Analysis Platform (SNAP)

= Tutorials & code bases

»  Pytorch Geometric Colab Notebooks (pytorch-
geometric.readthedocs.io/en/latest/notes/colabs.html)

= Zitnik Lab Graph ML Tutorials (github.com/mims-harvard/graphml-tutorials)
= Stanford University’s CS224 (web.stanford.edu/class/cs224w)

= Datasets

» Precision Medicine Oriented Knowledge Graph (PrimeKG)
(zitniklab.hms.harvard.edu/projects/PrimeKG)

= Therapeutic Data Commons (TDC) (tdcommons.ai)
= BioSNARP (snap.stanford.edu/biodata/)
= Open Graph Benchmark (OGB) (ogb.stanford.edu)
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