Machine Learning for Drug Development

Marinka Zitnik

Department of Biomedical Informatics Broad Institute of Harvard and MIT Harvard Data Science Initiative

marinka@hms.harvard.edu https://zitniklab.hms.harvard.edu

Outline

- Overview and introduction
- Part 1: Virtual drug screening and drug repurposing
- Part 2: Adverse drug effects, drug-drug interactions
- Part 3: Clinical trial site identification, patient recruitment
- Part 4: Molecule optimization, molecular graph generation, multimodal graph-to-graph translation
- Part 5: Molecular property prediction and transformers

Demos, resources, wrap-up & future directions

Datasets to facilitate algorithmic innovation

Therapeutics are one of most exciting areas for computational scientists. However,

Retrieving, curating, and processing datasets is time-consuming and requires extensive domain expertise

Datasets are scattered around the bio repositories and there is no centralized data repository for a variety of therapeutics

Many tasks are under-explored in AI/ML community because of the lack of data access

• Open-Source ML Datasets for Therapeutics:

- Wide range of tasks: target discovery, activity screening, efficacy, safety, manufacturing
- Wide range of products: small molecules, antibodies, vaccine, miRNA

• Numerous Data Functions:

- Extensive data functions
- Model evaluation, data processing and splits, molecule generation oracles, and much more

• 3 Lines of Code:

• Minimum package dependency, lightweight loaders

```
from tdc.single_pred import ADME
data = ADME(name = 'Caco2_Wang')
splits = data.split()
```


Our Vision for TDC

Advancing algorithms for key therapeutics problems

Modular Structure of TDC

DATASET INDEX

Absorption

Caco-2 (Cell Effective Permeability), Wang et al.

HIA (Human Intestinal Absorption), Hou et al.

Pgp (P-glycoprotein) Inhibition, Broccatelli et al.

Bioavailability, Ma et al.

Bioavailability F20/F30, eDrug3D

Lipophilicity, AstraZeneca

Solubility, AqSolDB

Solubility, ESOL

Hydration Free Energy, FreeSolv

Distribution

ADME

BBB (Blood-Brain Barrier), Adenot et BBB (Blood-Brain Barrier), Martins et al. PPBR (Plasma Protein Binding Rate), Ma et al. PPBR (Plasma Protein Binding Rate), eDrug3D VD (Volumn of Distribution), eDrug3D

Metabolism

CYP P450 2C19 Inhibition, Veith et al. CYP P450 2D6 Inhibition, Veith et al. CYP P450 3A4 Inhibition, Veith et al. CYP P450 1A2 Inhibition, Veith et al. CYP P450 2C9 Inhibition, Veith et al. Execretion Half Life, eDrug3D

Clearance, eDrug3D

Data Functions to Support Your Research

Model performance evaluators

FUNCTION INDEX

Regression Metric

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

Coefficient of Determination (R²)

Binary Classification Metric

Area Under the Receiver Operating Characteristic Curve (ROC-AUC)

Area Under the Precision-Recall Curve (PR-AUC)

Accuracy Metric

Precision

Recall

F1 Score

Multi-class Classification Metric

Micro-F1, Micro-Precision, Micro-Recall, Accuracy

Macro-F1

Cohen's Kappa (Kappa)

Token-level Classification Metric

Average ROC-AUC

A variety of data splits

FUNCTION INDEX

Data Split Overview

Random Split

- Scaffold Split
- Cold-Start Split

Data processing helpers

JNCTION INDEX	
Label Distribution Visualization	
Label Binarization	
Label Units Conversion	
Label Meaning	
Basic Statistics	
Data Balancing	
Graph Transformation for Pair Data	
Negative Samples for Pair Data	
From PubChem CID to SMILES	
From Uniprot ID to Amino Acid Sequence	

Molecule Generation Oracles

GuacaMol: Benchmarking Models for de Novo Molecular Design, J. Chem. Inf. Model., 2019 MOSES: A Benchmarking Platform for Molecular Generation, Models, Frontiers, in Pharmacology, 2020, torial at IJCAI, Jan 6, 2021

Leaderboards: Submit your Models

Leaderboard Guidelines

TDC benchmarks provide a systematic model development and evaluation framework. TDC benchmarks can considerably accelerate machine-learning model development, validation and transition into production and clinical implementation.

Benchmark Group

Each dataset in TDC can be thought of as a benchmark. For a machine learning model to be useful for a particular therapeutic usage, the model needs to achieve consistently good performance across a set of datasets or tasks. For this reason, we group individual benchmarks in TDC into meaningful batches, which we call **benchmark groups**. All datasets and tasks within a benchmark group are carefully selected and are centered around a particular theme. Further, dataset splits and evaluation metrics are also carefully selected to reflect the challenges of real-world settings where the models are ultimately implemented.

An Example of a Benchmark Group

One key task in drug discovery is the ADMET property prediction. A machine learning model that excels at ADMET needs to work well across a wide range of individual ADMET indices, such as Caco2, HIA and others. For this reason, TDC provides the ADMET Benchmark Group, which consists of 22 datasets from ADME and Tox.

How to Access a Benchmark Group

TDC provides a programming framework to access the data in a benchmark group. We use ADMET group as an example.

```
from tdc import BenchmarkGroup
group = BenchmarkGroup(name = 'ADMET_Group', path = 'data/')
predictions = {}
for benchmark in group:
    name = benchmark['name']
    train, valid, test = benchmark['train'], benchmark['valid'], benchmark['test']
    ## ---- train your model ---- ##
    predictions[name] = y_pred
```

group.evaluate(predictions)
{'caco2_wang': {'mae': 0.234}, 'hia_hou': {'roc-auc': 0.786}, ...}

To access and evaluate each individual benchmark, use:

benchmark = group.get('Caco2_Wang')
predictions = {}

name = benchmark['name']

train, valid, test = benchmark('train'], benchmark('valid'], benchmark('test')
---- train your model ----
predictions(name] = y_pred

group.evaluate(predictions)
{'caco2_wang': {'mae': 0.234}}

* * 9, 0 * 6 :

Follow the instruction on how to use the BenchmarkGroup class. For every dataset, we use scaffold split into 70%/10%/20% vianing/validation/testing fractions. The evaluation metrics are selected given the following criteria:

For binary classification:

- AUROC is used when the number of positive and negative samples are close.
- AUPRC is used when the number of positive samples are much smaller than negative samples.

For regression:

- MAE is used for majority of benchmarks.
- Spearman's correlation coefficient is used for benchmarks that depend on factors beyond the chemical structure.

We encourage submissions that reports results for the entire benchmark group. Still, we welcome and accept submissions that report partial results, for example, for just one of the five ADMET categories.

Absorption

Absorption measures how a drug travels from the site of administration to site of action.

Summary						
Dataset	Unit	Number	Task	Metric	Split	
Caco2	cm/s	906	Regression	MAE	Scaffold	
HIA	96	578	Binary	AUROC	Scaffold	
Pgp	96	1,212	Binary	AUROC	Scaffold	
Bioav	96	640	Binary	AUROC	Scaffold	
Lipo	log-ratio	4,200	Regression	MAE	Scaffold	
AqSol	log mol/L	9,982	Regression	MAE	Scaffold	

Leaderboard

Rank	Model	Contact	Link	#Params	Caco2 ↓≑	HIA↑ ¢	Pgp↑ ¢	Bioav ↑≑	Lipo↓ ¢	AqSol ↓≑
1	RDKit2D + MLP (DeepPurpose)	Kexin Huang	GitHub, Paper	633,409	0.393 ± 0.024	0.972 ± 0.008	0.918 ± 0.007	0.672 ± 0.021	0.574 ± 0.017	0.827 ± 0.047

zitniklab.hms.harvard.edu/TDC

You Are Invited to Join TDC! TDC is an Open-Source, Community Effort

• • • Therapeutics Data Commons - × +									
\leftarrow \rightarrow C \triangle \triangleq zitniklab.hms.harvard.edu/TDC/						\$	🔶 🔍	o 🛪 🍯) :
	Home	Quick Start	Datasets \checkmark	Data Functions \mathbf{v}	Leaderboards \checkmark	News	Team	GitHub	
	P					10			

Therapeutics Data Commons Machine Learning Datasets for Therapeutics

Get Started Join Mailing List

Therapeutics Data Commons (TDC) is a collection of machine learning tasks spacross different domains of therapeutics.

Therapeutics machine learning is an exciting field with incredible opportunities for expansion, innovation, and impact. Datasets and benchmarks in TDC provide a systematic model development and evaluation framework that allows more machine learning researchers to contribute to the field.

We envision that TDC can considerably accelerate machine-learning model development, validation and transition into production and clinical implementation.

TDC is an open-source initiative. If you want to get involved, check out the contribution guide.

zitniklab.hms.harvard.edu/TDC

github.com/mims-harvard/TDC

Tutorials

We provide a series of tutorials for you to get started using TDC:

Name	Description
101	Introduce TDC Data Loaders
102	Introduce TDC Data Functions
103.1	Walk through TDC Small Molecule Datasets
103.2	Walk through TDC Biologics Datasets
104	Generate 21 ADME ML Predictors with 15 Lines of Code
105	Molecule Generation Oracles

pip install PyTDC

Demos, tools, and implementations

DeepPurpose: Deep Learning Library for Compound and Protein Modeling DTI, Drug Property, PPI, DDI, Protein Function Prediction

<> Code	() Issues 3 11 Pull requests) Actions 🔟 Projects 🕮 Wiki 🕕 Security 🖂 Insights	
	🐉 master 👻 🌮 2 branches 🔿 3 tag	Go to file Add file -	🛓 Cod
	pykao and Ken Kao changed variabl	le names for consistency (#71) 5300269 23 hours ago	🕚 486 com
	DEMO	fix datasets server issue	2 months
	DeepPurpose	changed variable names for consistency (#71)	23 hours
	docs	updated instructions for download & install (#20)	4 months
	📄 figs	delete pdf	9 months
	toy_data	data loading tutorial added	9 months
	dockerignore .	merge dev	9 months
	🗅 .gitignore	looked like a typo (#18)	5 months
	CONTRIBUTE.md	include utility function for drug/target embedding only	2 months
	LICENSE.md	Create LICENSE.md	9 months
	MANIFEST.in	add ESPF file in the pip files	13 days
	README.md	Update README.md	5 days
	Tutorial_1_DTI_Prediction.ipynb	updated to the latest BindingDB database updated 2020-12-01 (#68)	8 days
	Tutorial_2_Drug_Property_Pred_As	add utils function to download HIV data and fix the tutorial 2 bugs	4 months
	C environment.yml	Update environment.yml (#57)	last mo
	requirements.txt	prep for pip install	13 days
	🗅 setup.cfg	prep for pip install	13 days
	🗅 setup.py	add ESPF file in the pip files	13 days

Pull requests Issues Marketplace

README.md

kexinhuang12345 / DeepPurpos

Search or jump to.

 \mathbf{O}

A Deep Learning Library for Compound and Protein Modeling DTI, Drug Property, PPI, DDI, Protein Function Prediction

Applications in Drug Repurposing, Virtual Screening, QSAR, Side Effect Prediction and More

pypi package 0.0.5 downloads/month 545 downloads 545 stars 297 forks 89

This repository hosts DeepPurpose, a Deep Learning Based Molecular Modeling and Prediction Toolkit on Drug-

Demos

Checkout 10+ demos & tutorials to start:

⊙ Watch - 24 🛱 Star 297 💱 Fork 89

Name	Description
Dataset Tutorial	Tutorial on how to use the dataset loader and read customized data
Drug Repurposing for 3CLPro	Example of one-liner repurposing for 3CLPro
Drug Repurposing with Customized Data	Example of one-liner repurposing with AID1706 Bioassay Data, training from scratch
Virtual Screening for BindingDB IC50	Example of one-liner virtual screening
Reproduce DeepDTA	Reproduce DeepDTA with DAVIS dataset and show how to use the 10 lines framework
Virtual Screening for DAVIS and Correlation Plot	Example of one-liner virtual screening and evaluate on unseen dataset by plotting correlation
Binary Classification for DAVIS using CNNs	Binary Classification for DAVIS dataset using CNN encodings by using the 10 lines framework.
Pretraining Model Tutorial	Tutorial on how to load pretraining models

https://github.com/kexinhuang12345/DeepPurpose

and more in the DEMO folder!

DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction, Bioinformatics 2020

ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021

How can domain scientists interact with AI systems?

DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction, *Bioinformatics* 2020 MolDesigner; Interactive Design of Efficacious Drugs with Deep Learning, *NeurIPS* 2020

MolDesigner: Interactive Design of Drugs with Deep Learning

• 📀 G	radio × +		
→ C ☆	A Not Secure deeppurpose.sunlab.org	🖈 🔶 🗘 (o 🛪 🌖 E
	AMINO ACID SEQUENCE	OUL LOUMER.	
	LGGSVAIKITEHSWNADLYKLMGHFAWWTAFVTNVNASSSEAFLIGCNYLC VMHANYIFWRNTNPIQLSSYSLFDMSKFPLKLRGTAVMSLKEGQINDMILS RENNRVVISSDVLVNN	SKPREQIDGY SLLSKGRLII G	
	MOLECULE		
	AFFINITY PREDICTION MODEL TYPE Daylight-AAC	$\mathbb{Q} = \mathbb{Q}$	
	CLEAR	SUBMIT	
		<u>Jobann</u>	
	CANONICAL SMILES		
	CCC(CC)COC(=0)[C@H](C)NP(=0)(OC1CCCCC1)OC[C@H]2O[C@ ([C@@H]2O)O)c3n4c(cc3)C(N)=NC=N4](C#N)([C@H]	
	BINDING AFFINITY (IC50)		
	3896.74 nM		
	BINDING AFFINITY (PIC50)		
	5.41		
	PREDICTED ADMET PROPERTY		
	Property	Value	
	Solubility	-3.57 log mol/L	
	Lipophilicity	0.68 (log-ratio)	
	(Absorption) Caco-2	-5 29 cm/s	
	(Absorption) HIA	-3.23 Cm/5	
	(Absorption) Rep	11.32 5 6 AA 9	
	(Absorption) Pgp	0.44 5	
	(Absorption) Bloavallability F20	/5.45 %	

http://deeppurpose.sunlab.org

DEMO: DRUG-TARGET INTERACTION PREDICTION

Drug: <u>Remdesivir</u> Remdesivir is indicated for the treatment of adult and pediatric patients aged 12 years and over weighing at least 40 kg for coronavirus disease 2019 (COVID-19) infection requiring hospitalization.

Target protein: <u>Replicase polyprotein 1ab</u>. Multifunctional protein involved in the transcription and replication of viral RNAs

Molecular structure of Remdesivir

>lcl|BSEQ0052511|Replicase polyprotein 1ab MESLVPGFNEKTHVQLSLPVLQVRDVLVRGFGDSVEEVLSEARQHLKDGTCGLVEVEKGV LPQLEQPYVFIKRSDARTAPHGHVMVELVAELEGIQYGRSGETLGVLVPHVGEIPVAYRK VLLRKNGNKGAGGHSYGADLKSFDLGDELGTDPYEDFQENWNTKHSSGVTRELMRELNGG AYTRYVDNNFCGPDGYPLECIKDLLARAGKASCTLSEQLDFIDTKRGVYCCREHEHEIAW YTERSEKSYELQTPFEIKLAKKFDTFNGECPNFVFPLNSIIKTIQPRVEKKKLDGFMGRI RSVYPVASPNECNQMCLSTLMKCDHCGETSW0TGDFVKATCEFCGTENLTKEGATTCGYL PONAVVKIYCPACHNSEVGPEHSLAEYHNESGLKTILRKGGRTIAFGGCVFSYVGCHNKC AYWVPRASANIGCNHTGVVGEGSEGLNDNLLEILQKEKVNINIVGDFKLNEEIAIILASF SASTSAFVETVKGLDYKAFKQIVESCGNFKVTKGKAKKGAWNIGE0KSILSPLYAFASEA ARVVRSIFSRTLETAQNSVRVLQKAAITILDGISQYSLRLIDAMMFTSDLATNNLVVMAY ITGGVVQLTSQWLTNIFGTVYEKLKPVLDWLEEKFKEGVEFLRDGWEIVKFISTCACEIV GGQIVTCAKEIKESVQTFFKLVNKFLALCADSIIIGGAKLKALNLGETFVTHSKGLYRKC VKSREETGLLMPLKAPKEIIFLEGETLPTEVLTEEVVLKTGDLQPLEQPTSEAVEAPLVG TPVCINGLMLLEIKDTEKYCALAPNMMVTNNTFTLKGGAPTKVTFGDDTVIEV0GYKSVN ITFELDERIDKVLNEKCSAYTVELGTEVNEFACVVADAVIKTLQPVSELLTPLGIDLDEW SMATYYLFDESGEFKLASHMYCSFYPPDEDEEEGDCEEEEFEPSTQYEYGTEDDYQGKPL EFGATSAALQPEEEQEEDWLDDDSQQTVGQQDGSEDNQTTTIQTIVEVQPQLEMELTPVV 0TIEVNSFSGYLKLTDNVYIKNADIVEEAKKVKPTVVVNAANVYLKHGGGVAGALNKATN

Amino acid sequence of Replicase polyprotein 1ab

How can domain scientists interact with AI systems?

DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction, *Bioinformatics* 2020 MolDesigner; Interactive Design of Efficacious Drugs with Deep Learning, *NeurIPS* 2020

Automating Science

Automating Science

How to explain predictions?

Key idea:

- Summarize where in the data the model "looks" for evidence for its prediction
- Find a small subgraph most influential for the prediction

GNN model training and predictions

Explaning GNN's predictions

GNNExplainer: Key Idea

- Input: Given prediction f(x) for node/link x
- Output: Explanation, a small subgraph M_x together with a small subset of node features:
 - M_x is most influential for prediction f(x)
- Approach: Learn M_x via counterfactual reasoning
 - Intuition: If removing v from the graph strongly decreases the probability of prediction ⇒ v is a good counterfactual explanation for the prediction

GNN Explainer; Generating, Explanations for Graph, Neural, Networks, NeurIPS 2019

Examples of Explanations

"Will rosuvastatin treat hyperlipidemia? What is the disease treatment mechanism?"

New Algorithms: GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 New Insights: Discovery of Disease Treatment Mechanisms, through the Multiscale Interactome Vature Communications 2021 (ig press)

Open challenges and future directions

Learn about Therapeutics ML!

National Symposium on Drug Repurposing for Future Pandemics

17-18th November 2020

Virtual Symposium

Registration Closed

https://www.drugsymposium.org

Videos from the presentations are now publicly available to everyone through the Symposium Video Channel

Open Challenges

- Disconnected, uncoupled biomedical knowledge:
 - <u>Challenge</u>: Need to combine data in their broadest sense to close the gap between research and patient data
- Diverse mechanisms of drug action:
 - <u>Challenge</u>: Need to consider diverse mechanisms through which a drug can treat a disease
- Novel drugs in development, emerging diseases:
 - <u>Challenge</u>: Need to learn and reason about never-before-seen phenomena
- Datasets for a variety of therapeutics tasks:
 - <u>Challenge</u>: Need datasets and benchmarks to accelerate ML model development, validation and transition into production and clinical implementation

Outline

- Overview and introduction
- Part 1: Virtual drug screening and drug repurposing
- Part 2: Adverse drug effects, drug-drug interactions
- Part 3: Clinical trial site identification, patient recruitment
- Part 4: Molecule optimization, molecular graph generation, multimodal graph-to-graph translation
- Part 5: Molecular property prediction and transformers Demos, resources, wrap-up & future directions

111

https://zitniklab.hms.harvard.edu/drugml