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Datasets to facilitate 
algorithmic innovation
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Therapeutics are one of most 
exciting areas for computational 

scientists. However,
Retrieving, curating, and processing datasets is time-consuming and 

requires extensive domain expertise

Datasets are scattered around the bio repositories and there is no 
centralized data repository for a variety of therapeutics 

Many tasks are under-explored in AI/ML community
because of the lack of data access
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● Open-Source ML Datasets for Therapeutics:
○ Wide range of tasks: target discovery, activity 

screening, efficacy, safety, manufacturing
○ Wide range of products: small molecules, antibodies, 

vaccine, miRNA
● Numerous Data Functions:

○ Extensive data functions 
○ Model evaluation, data processing and splits, 

molecule generation oracles, and much more
● 3 Lines of Code:

○ Minimum package dependency, lightweight loaders
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Domain 
scientists

ML
scientists

Identify meaningful 
learning tasks

Design powerful 
ML models

Advancing algorithms for key therapeutics problems

Our Vision for TDC
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Modular Structure of TDC
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67 datasets 
spread over 22 
learning tasks
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Model performance evaluators

Data processing helpers

A variety of data splits

Data Functions to Support Your 
Research
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GuacaMol

MOSES

Literature

Molecule Generation 

Generated
Molecules

Oracle Score

Optimize

GuacaMol: Benchmarking Models for de Novo Molecular Design, J. Chem. Inf. Model., 2019
MOSES: A Benchmarking Platform for Molecular Generation Models, Frontiers in Pharmacology, 2020

Molecule Generation Oracles
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Leaderboards: Submit your Models
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You Are Invited to Join TDC! TDC is 
an Open-Source, Community Effort

github.com/mims-harvard/TDC

zitniklab.hms.harvard.edu/TDC
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Demos, tools, and 
implementations

13ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021



DeepPurpose: Deep Learning Library for 
Compound and Protein Modeling

DTI, Drug Property, PPI, DDI, Protein Function Prediction
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DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction, Bioinformatics 2020

https://github.com/kexinhuang12345/DeepPurpose



How can domain scientists interact 
with AI systems?
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DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction, Bioinformatics 2020
MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning, NeurIPS 2020ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021



MolDesigner: Interactive Design of 
Drugs with Deep Learning
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http://deeppurpose.sunlab.org
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DEMO: DRUG-TARGET 
INTERACTION PREDICTION

Drug: Remdesivir Remdesivir is indicated for the treatment of adult and pediatric 
patients aged 12 years and over weighing at least 40 kg for coronavirus disease 
2019 (COVID-19) infection requiring hospitalization.

Target protein: Replicase polyprotein 1ab. Multifunctional protein involved in the 
transcription and replication of viral RNAs
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Molecular structure of Remdesivir Amino acid sequence of 
Replicase polyprotein 1ab

https://go.drugbank.com/drugs/DB14761
https://go.drugbank.com/polypeptides/P0DTD1


How can domain scientists interact 
with AI systems?
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Automating Science
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Automating Science
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How to explain predictions?
Key idea: 
§ Summarize where in the data the model “looks” for 

evidence for its prediction
§ Find a small subgraph most influential for the prediction 

Approach to generate explanations 
for graph neural networks based 
on counterfactual reasoning
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GNNExplainer: Key Idea
§ Input: Given prediction 𝑓(𝑥) for node/link 𝑥
§ Output: Explanation, a small subgraph 𝑀! together 

with a small subset of node features:
§ 𝑀! is most influential for prediction 𝑓(𝑥)

§ Approach: Learn 𝑀! via counterfactual reasoning
§ Intuition: If removing 𝑣 from 

the graph strongly 
decreases the probability of 
prediction ⇒ 𝑣 is a good 
counterfactual explanation 
for the prediction
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Examples of Explanations
”Will rosuvastatin treat hyperlipidemia? What
is the disease treatment mechanism?” 

New Algorithms: GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019
New Insights: Discovery of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications 2021 (in press)23ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021



Open challenges and 
future directions
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Learn about Therapeutics ML!

https://www.drugsymposium.org

Videos from the presentations are now publicly available 
to everyone through the Symposium Video Channel
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Open Challenges
§ Disconnected, uncoupled biomedical knowledge:

§ Challenge: Need to combine data in their broadest sense to close 
the gap between research and patient data

§ Diverse mechanisms of drug action:
§ Challenge: Need to consider diverse mechanisms through which a 

drug can treat a disease

§ Novel drugs in development, emerging diseases:
§ Challenge: Need to learn and reason about never-before-seen 

phenomena

§ Datasets for a variety of therapeutics tasks:
§ Challenge: Need datasets and benchmarks to accelerate ML 

model development, validation and transition into production and 
clinical implementation
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