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Outline
Overview and introduction

Part 1: Virtual drug screening and drug repurposing 

Part 2: Adverse drug effects, drug-drug interactions

Part 3: Clinical trial site identification, patient recruitment

Part 4: Molecule optimization, molecular graph generation, 
multimodal graph-to-graph translation

Part 5: Molecular property prediction and transformers

Demos, resources, wrap-up & future directions
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Drug-drug interactions and 
polypharmacy
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Paper:
Zitnik, Marinka and Agrawal, Monica and 
Leskovec, Jure. Modeling Polypharmacy Side 
Effects with Graph Convolutional Networks, 
Bioinformatics 2018
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Patients take multiple drugs to treat 
complex or co-existing diseases

46% of people over 65 years take more than 5 drugs

Many take more than 20 drugs to treat heart diseases, depression or cancer 

15% of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed $177 billion in the U.S. alone
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Poly-Therapy
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Unexpected Drug Interactions
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Task: How likely will a particular 
combination of drugs lead to a 

particular side effect?
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Decagon
How likely with a 
pair of drugs 𝑐, 𝑑
lead to side effect 𝑟?

Model and predict side 
effects of drug pairs

𝑐 𝑑

𝑟
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Challenges
§ Large number of types of side effects:

§ Each occurs in a small subset of patients
§ Side effects are interdependent

§ No information about drug pairs that 
are not yet used in patients

§ Molecular, drug, and patient data: 
§ Heterogeneous and multi-relational
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Decagon
In silico screening of drug combinations

§ Use molecular, drug, and patient data
§ Task: Given a drug pair 𝑐, 𝑑, predict 

side effects of that drug pair
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Mode 1
e.g., drugs

Mode 2
e.g., proteins

E.g., Specific type of drug-
drug interaction (𝑟!)

𝑟"

𝑟#

𝑟$

E.g., drug-target interaction (𝑟")𝑟% 𝑟%
𝑟%

𝑟%

E.g., protein-protein interaction (𝑟#)

𝑟&

𝑟' Edge type 𝑖
Node types

Setup: Multimodal Networks
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Setup: Multimodal Networks

r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effect

Drug pair 𝑐, 𝑑 leads 
to side effect 𝑟#
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Goal: Given a partially observed graph, 
predict labeled edges between drug nodes

Problem Formulation: Predict

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD

Query: Given a drug pair 𝑐, 𝑑, how likely does an 
edge (𝑐, 𝑟!, 𝑑) exist?

Co-prescribed drugs 𝑐 and 
𝑑 lead to side effect 𝑟!
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Graph Neural Network

…
z

Input

Output: Drug pair 𝑐, 𝑑
leads to side effect 𝑟#
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Decagon: Graph Neural Net

1. Encoder: Take the graph and 
learn an embedding for every 
node

2. Decoder: Use the learned 
embeddings to predict side 
effects

r, ?

Embedding

13ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021



f(     )=
Embedding Nodes

Intuition: Map nodes to d-dimensional embeddings
such that similar nodes in the graph are embedded 
close together

Heterogeneous
graph

2-dimensional node
embeddings

How to learn f?
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Generate embeddings based on local network 
neighborhoods separated by edge type 

Key Idea: Aggregate Neighbors

2) Learn how to transform and propagate 
information across computation graph

1st order 
neighbor of 𝑣

2nd order 
neighbor of 𝑣

1) Determine a node’s computation 
graph for each edge type

Example for edge type 𝑟$:
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Encoder: Embeddings
v

v

v
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Encoder: Embeddings

A batch of computation graphs

v

v

v

17ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021



Model can be of arbitrary depth: 
§ Nodes have embeddings at 

each layer
§ Layer-0 embeddings are nodes’ 

input features

18

Deep Model: Many Layers
1st order 

neighbors

2nd order 
neighbors Recap: Nodes with similar 

network neighborhoods are 
embedded close together

Layer-0

Layer-2

Layer-1

Deep model with 𝑲 layers:
§ Convolves information across 
𝐾th order neighborhood

§ Embedding of a node depends 
on nodes at most 𝐾 hops away
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Parameter weight matrices

Key element: Each node’s computation graph 
defines a neural network with a different architecture
§ Initial 0-th layer embeddings are equal to node features:

§ Per-layer update of node embeddings:

§ Embeddings after 𝐾 layers of neighborhood aggregation: 

Aggregate neighbor’s 
previous-layer embeddings, 

separated by edge type 

Graph Neural Encoder

Previous-layer 
embedding of 𝑣

Normalization constant, fixed 
e.g., 1/|𝑁!"|, or learned

Ability to integrate side 
information about nodes
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Decoder: Link Prediction

v

v

v
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Graph Neural Network

…
z

Output: Drug pair 𝑐, 𝑑
leads to side effect 𝑟#

Input
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Data: Molecular, Drug & Patient
§ Protein-protein interactions: Physical 

interactions in humans [720 k edges]
§ Drug-target relationships [19 k edges]
§ Side effects of drug pairs: National adverse 

event reporting system [4.6 M 
edges]

§ Additional side information

Final graph has 966 different edge types

r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effect

r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effect
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Experimental Setup
Construct a heterogeneous 
graph of all the data

Side-effect centric evaluation: 
§ Train: Fit a model on known 

side effects of drug pairs
§ Test: Given a query drug 

pair, predict all types of side 
effects Drug pair 𝑐, 𝑑 leads 

to side effect 𝑟!

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD
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Results: Side Effect Prediction

36% average in AP@50 improvement over baselines
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AUROC AP@50
Decagon RESCAL tensor factorization
DEDICOM tensor factorization Node2vec + Logistic regression
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We apply Decagon to 
the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin, when 
taken together, break down muscle tissue?
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New Predictions
Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 2012?
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Conclusions
Decagon predicts side effects of any drug pair:
§ Multi-relational Graph Neural Network
§ The first AI method for polypharmacy
§ Can work even for drug combinations not yet 

used in patients
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Follow-up and Other Work

28

GNN architectures and chemical structure representations:
§ Drug-drug adverse effect prediction with graph co-attention [Deac et al.]
§ CASTER: Predicting drug interactions with chemical substructure representation [Huang et al.]
§ GENN: Predicting correlated drug-drug interactions with graph energy neural networks [Ma et al.]
§ KGNN: Knowledge graph neural network for drug-drug interaction prediction [Lin et al.]
§ Bi-level GNNs for drug-drug interaction prediction [Bai et al.]

Drug-drug synergy scoring:
§ DeepSynergy: predicting anti-cancer drug synergy with Deep Learning [Preurer et al.]
§ Network-based prediction of drug combinations [Cheng et al.]
§ MR-GNN: Multi-resolution and dual GNN for predicting structured entity interactions [Xu et al.]
§ DeepCCI: End-to-end deep learning for chemical-chemical interaction prediction [Kwon et al.]

Other types of biological relationships:
§ Predicting human microbe-drug associations via GCN with conditional random field [Long et al.]
§ Deep learning improves prediction of drug-drug and drug-food interactions [Ryu et al.]
§ HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods [Veselkov et al.]
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Drug-drug interactions

29

Paper:
Yunsheng Bai, Ken Gu, Yizhou Sun, Wei Wang. 
Bi-Level Graph Neural Networks for Drug-Drug 
Interaction Prediction, arXiv:2006.14002
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Approach
§ Bi-level graph view of DDI data for multi-scale prediction
§ Typically, GNN methods operate only on either the 

representation graphs or a single interaction graph without

30

Node colors in the 
representation graphs 
denote molecular level 
element types. Edge colors 
in the interaction graph 
denote drug interactions 
types
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Results

31

Performance of all methods on 
DRUGBANK under different training 
data ratios (TR). Further breakdown 

of performance under different node 
degree splits are shown.

Bi-level GNN
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Drug-drug interactions and 
food-drug interactions

32

Paper:
Jae Yong Ryu, Hyun Uk Kim, and  View ORCID 
ProfileSang Yup Lee. Deep learning improves 
prediction of drug-drug and drug-food 
interactions, PNAS 2018
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Approach

33

DeepDDI designs a feature called structural similarity 
profile (SSP) combined with MLP for prediction

Input: DeepDDI accepts chemical structures (in SMILES 
describing the structure of a chemical compound) and names 
of drugs in pairs as inputs

Output: It predicts their potential drug–drug interaction (DDI) 
types as outputs in human-readable sentences having the input 
drug names
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Results: DDI Prediction
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Prediction of food constituents 
that reduce the in vivo 
concentration of approved 
drugs. A network showing 
relationships among 357 
diseases, 430 approved drugs, 
274 food constituents, and 
356 food sources was created 
using the DeepDDI output 
sentences obtained from 
358,995 drug-food constituent 
pairs.
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Outline
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