# Machine Learning for Drug Development

#### Marinka Zitnik

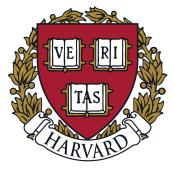
Department of Biomedical Informatics Broad Institute of Harvard and MIT Harvard Data Science Initiative

marinka@hms.harvard.edu https://zitniklab.hms.harvard.edu









# Outline

- Overview and introduction
  - Part 1: Virtual drug screening and drug repurposing
  - Part 2: Adverse drug effects, drug-drug interactions



- Part 3: Clinical trial site identification, patient recruitment
- Part 4: Molecule optimization, molecular graph generation, multimodal graph-to-graph translation
- Part 5: Molecular property prediction and transformers
- Demos, resources, wrap-up & future directions

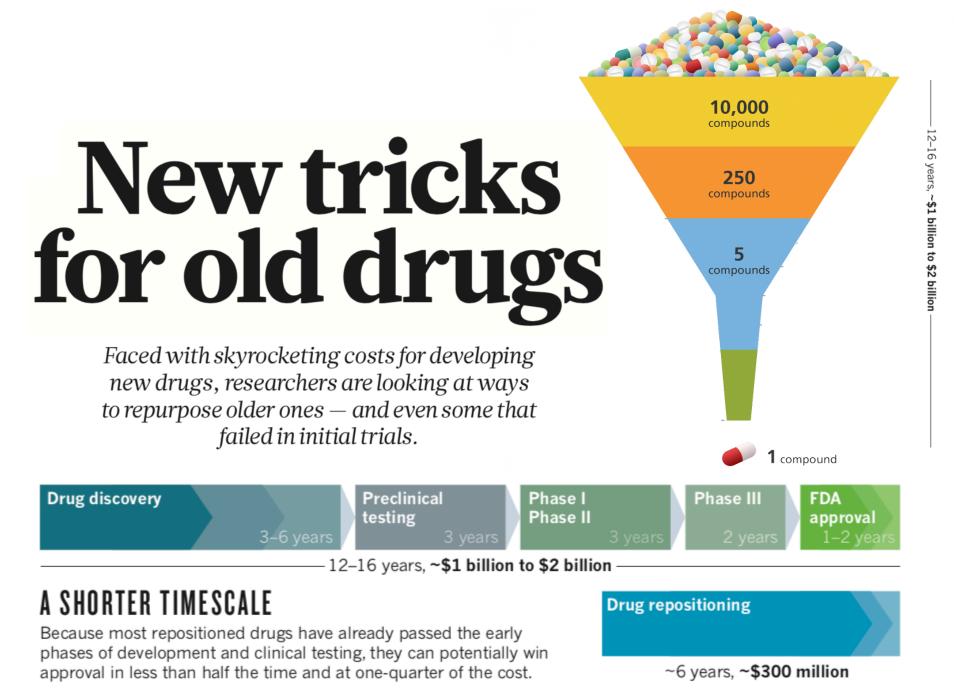
#### Method:

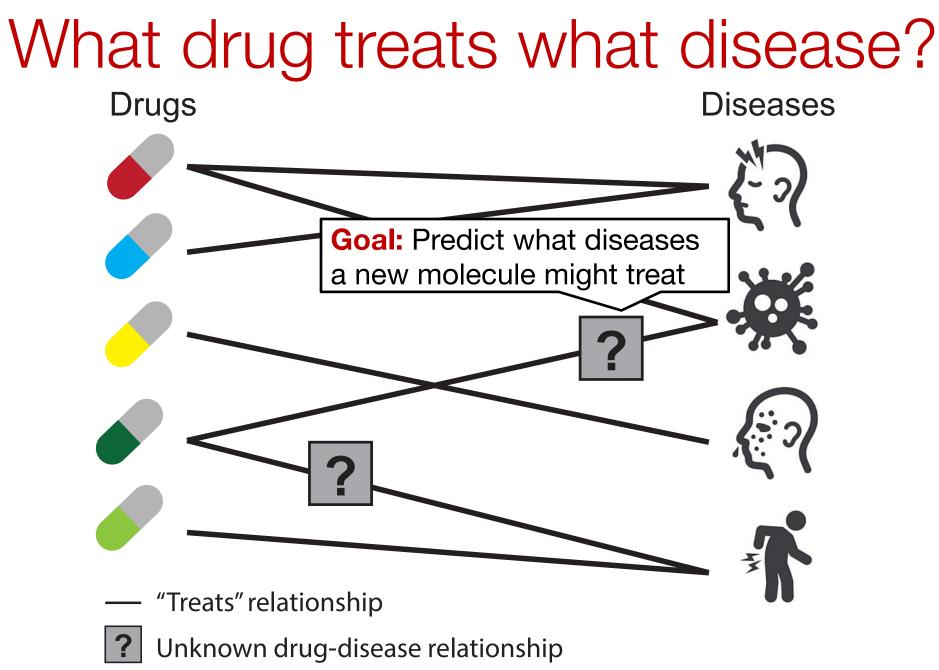
### Subgraph Neural Networks

Alsentzer, Finlayson, Li, and Zitnik, Subgraph Neural Networks, NeurIPS 2020

## Application: Finding Effective Drug Treatments

In submission



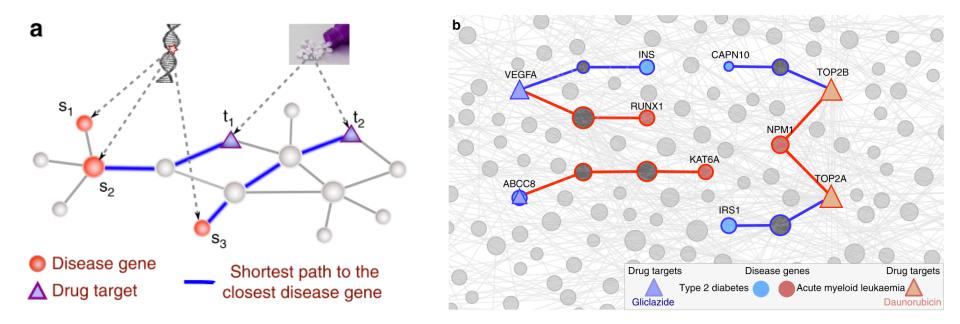


#### Key Insight: Subgraphs **Disease:** Subgraph of rich **Drug:** Subgraph of rich protein network defined protein network defined on on drug's target proteins disease proteins A drug likely treats a disease if it is **close** to the disease in "pharmacological space"

Idea: Use the paradigm of embeddings to operationalize the concept of closeness in pharmacological space

### Why Subgraphs? – Part #1

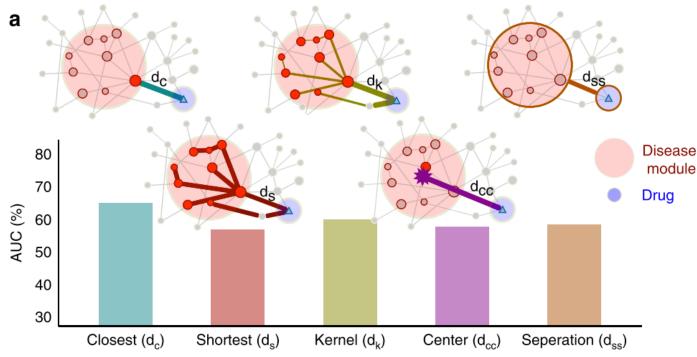
- Analysis of 238 drugs used in 78 diseases
- Key result: Therapeutic effect of drugs is localized in a small network neighborhood of disease genes



Guney, E., Menche, J., Vidal, M. and Barábasi, A.L., Network-based in silico drug efficacy screening. Nature Communications, 2016

## Why Subgraphs? – Part #2

- Analysis of 238 drugs used in 78 diseases
- Key result: Therapeutic effect of drugs is localized in a small network neighborhood of disease genes



Guney, E., Menche, J., Vidal, M. and Barábasi, A.L., Network-based in silico drug efficacy screening. Nature Communications, 2016

### Why Subgraphs? – Part #3

Phenotype

lymphoma

Non-Hodgkin's

Restless legs syndrome

Erectile dysfunction

Endometrial cancer

- Analysis of 238 drugs used in 78 diseases
- Key result: Therapeutic effect in a small network neighborhc

Negative z-values: Drug targets are close (i.e., proximal) to disease genes in the PPI network → Successful repurposing

Proximity (z)

-2.4

-1.1

-1.0

- 1.1 - 1.6

> 1.8 0.2

> 0.0

- 5.6 - 2.2 - 2.6

Table 1 | Proximity values for several repurposed and failed drugs.

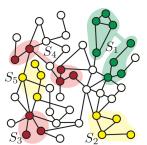
Positive z-values: Drug targets are far away (i.e., <u>not proximal</u>) from disease genes in the PPI network → Drug failure due to lack of efficacy

| norgestrel                    | Confer protection against endometrial cancer                                                   | Endometrial cancer                                   |
|-------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Failures due to lack of effic | acy                                                                                            |                                                      |
| Tabalumab                     | Showed lack of efficacy for systemic lupus<br>erythematosus                                    | Systemic lupus<br>erythematosus                      |
| Preladenant                   | Discontinued trials for Parkinson due to<br>lack of improvement compared with<br>placebo       | Parkinson's disease                                  |
| Iniparib                      | Failed to achieve improvement while being<br>tested for squamous non-small-cell lung<br>cancer | Squamous cell cancer                                 |
| Failures due to adverse effe  | etcs                                                                                           |                                                      |
| Semagacestat<br>Terfenadine   | Failed trials due to worsening AD<br>Withdrawn due to inducing cardiac<br>arrhythmia           | AD<br>Cardiac arrhythmia<br>Arrhythmia (side effect) |

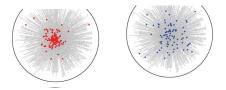
Guney, E., Menche, J., Vidal, M. and Barábasi, A.L., Network-based in silico drug efficacy screening. Nature Communications, 2016

# Why are subgraphs challenging?

- Need to predict over structures of varying size:
  - How to represent subgraphs that are not k-hop neighborhoods?

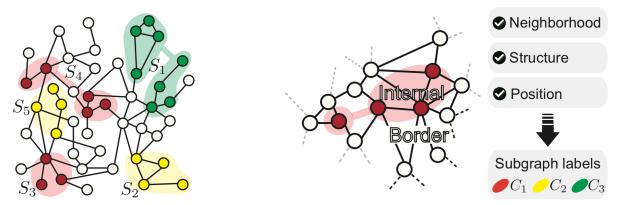


- Rich connectivity patterns, both internally a set of G: externally through interactions with the rest of G:
  - How to inject this information into a GNN?
- Subgraphs can be:
  - Localized and reside in our region of the graph
  - Distributed across multiple local neighborhoods



# **Problem Formulation**

- Goal: Learn subgraph embeddings such that the likelihood of preserving subgraph topology is maximized in the embedding space
  - S<sub>i</sub> and S<sub>j</sub> with similar subgraph topology should be embedded close together in the embedding space
- SubGNN: Representation learning framework for all key properties of subgraph topology



# SubGNN: Overview

- SubGNN: Representation learning framework for all key properties of subgraph topology
- Two key parts:
  - Part 1: Hierarchical propagation of information in *G*:
    - Propagate messages from anchor patches to subgraphs
    - Aggregate messages into a final subgraph embedding
  - Part 2: Routing of messages through 3 channels, each capturing a distinct property of subgraph topology: position, neighborhood, and structure channels



Emily Alsentzer Sam Finlayson Michelle Li

Alsentzer, Finlayson, Li, and Zitnik, Subgraph Neural Networks, NeurIPS 2020

## Part 1: Neural Message Passing

- Property *x*-specific messages  $m_x$  are propagated from anchor patch  $A_x^q$  to subgraph component  $S_i^c$
- Anchor patches are helper subgraphs randomly sampled from G; patches  $A_P$ ,  $A_N$ , and  $A_S$  for position, neighborhood and structure

similarity function between a subgraph component and an anchor patch  $Msg_x = \gamma_x \left(S^{(C)}, A_x\right) \cdot p_x$ 

$$\mathbf{a}_{\mathbf{x},c} = \operatorname{AGG}_{M}\left(\left\{\operatorname{MSG}_{\mathbf{x}}(S^{(C)}, A_{\mathbf{x}}, p_{\mathbf{x}}), \forall A_{\mathbf{x}} \in \mathcal{A}_{\mathbf{x}}\right\}\right),$$

$$\mathbf{h}_{\mathbf{X},c}^{(l)} = \sigma \left( \mathbf{W}_h \cdot [\mathbf{a}_{\mathbf{X},c}; \mathbf{h}_{\mathbf{X},c}^{(l-1)}] \right),$$

property-specific representation of a subgraph component; passed to the next layer Subaraph

component

Anchor

 $\mathbf{m}_{\text{D}}$  1

component

Anchor

batch

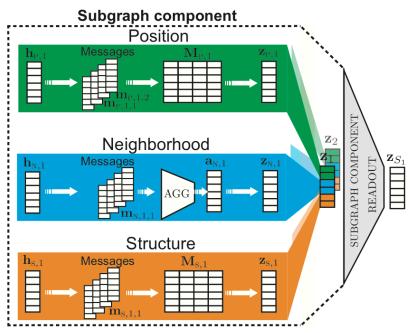
Anchor

patch

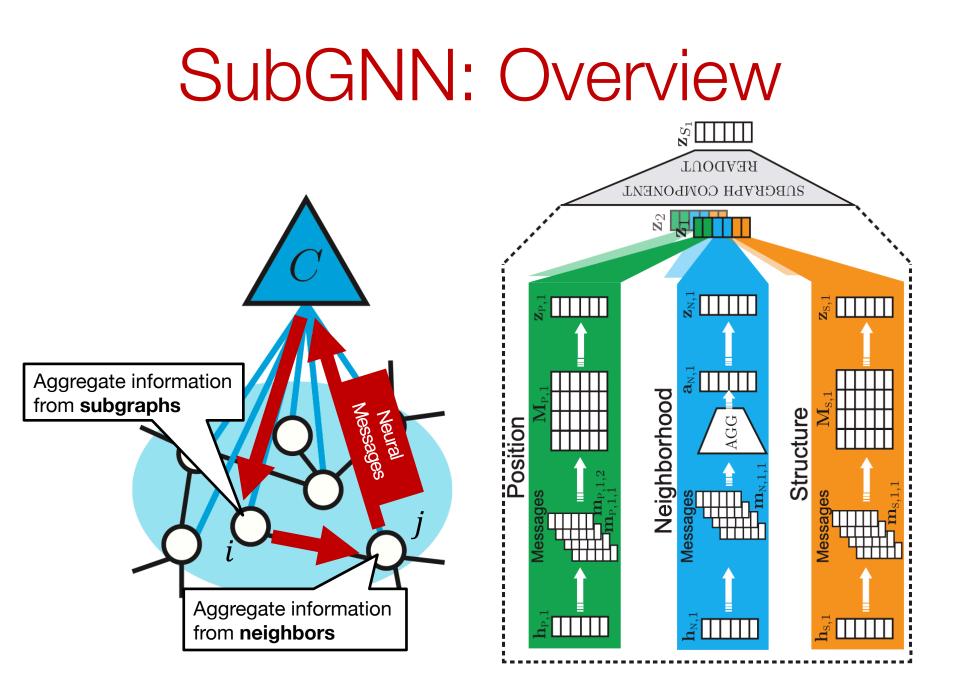
patch

# Part 2: Property-aware Routing

- SubGNN specifies three channels, each designed to capture a distinct subgraph property
  - Position, neighborhood, and structure
- Channel x has three key elements:
  - Similarity function  $\gamma_x$  to weight messages sent between anchor patches and subgraph components
  - Sampling function  $\varphi_{\chi}$  to generate anchor patches
  - Anchor patch encoder  $\psi_x$



Channel outputs  $z_x$  are concatenated to produce a final subgraph representation  $z_s$ 

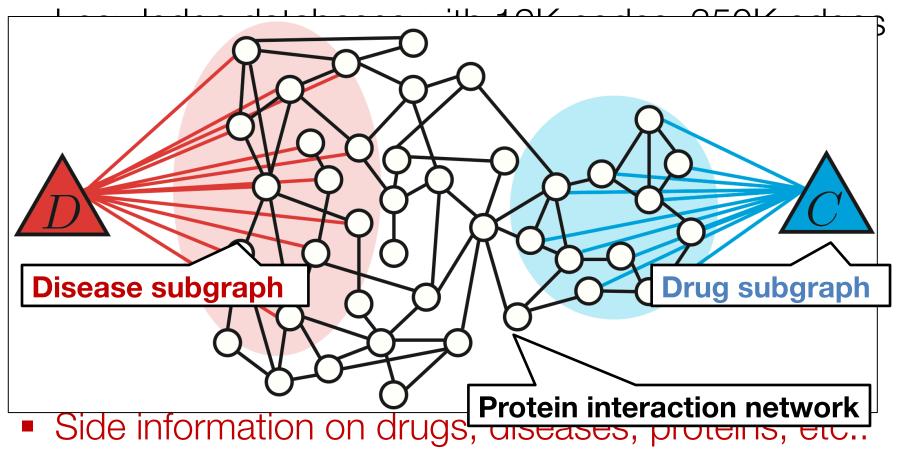


### Setup: Drug Repurposing dataset

- Protein-protein interaction network culled from 15 knowledge databases with 19K nodes, 350K edges
- Drug-protein and disease-protein links:
  - DrugBank, OMIM, DisGeNET, STITCH DB and others
  - 20K drug-protein links, 560K disease-protein links
- Medical indications and contra-indications:
  - DrugBank, MEDI-HPS, DailyMed, Drug Central, RepoDB
  - 6K drug-disease indications
- Side information on drugs, diseases, proteins, etc.:
  - Molecular pathways, disease symptoms, side effects

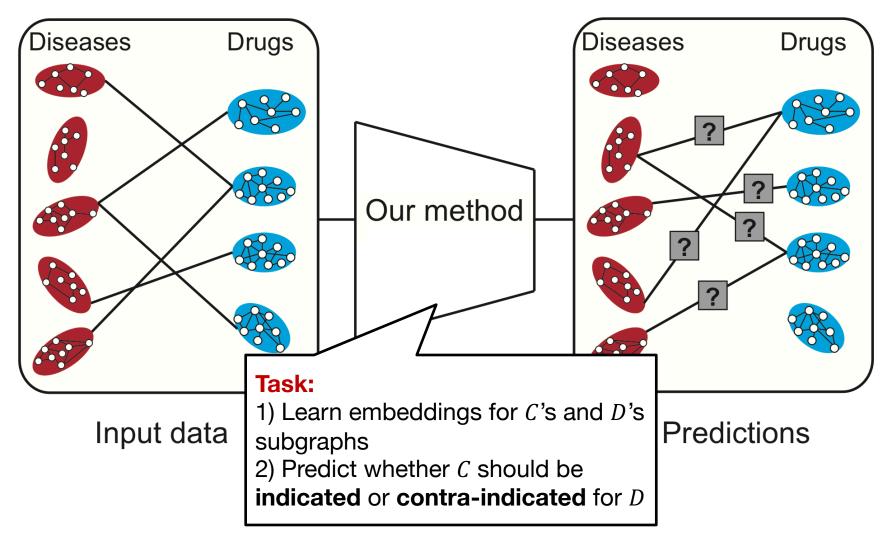
#### Setup: Drug repurposing dataset

Protein-protein interaction network culled from 15



Molecular pathways, disease symptoms, side effects

# Predict links between drug and disease subgraphs



ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021

### Results: Drug Repurposing Stanford MEDICINE SPARK Translational Research Program From Bench to Bedside

#### Drug

N-acetyl-cysteine Xamoterol Plerixafor Sodium selenite Fbselen Itraconazole Bestatin Bestatin Ketaprofen Sildenafil Tacrolimus Benzamil Carvedilol Benserazide Pioglitazone Sirolimus

#### Disease

cystic fibrosis neurodegenerat cancer cancer C difficile cancer lymphedema pulmonary arterial hypertension lymphedema lymphatic malformation pulmonary arterial hypertension psoriasis Chagas' disease BRCA1 cancer interstitial cystitis dystrophic epidermolysis bullosa

Task: Predict if an existing drug can be repurposed for a new disease

| Rank: | 36/5000  |
|-------|----------|
| Rank: | 10/5000  |
| Rank: | 26/5000  |
| Rank: | 11/5000  |
| Rank: | 16/5000  |
| Rank: | 28/5000  |
| Rank: | 26/5000  |
| Rank: | 46/5000  |
| Rank: | 114/5000 |
| Rank: | 9/5000   |
| Rank: | 41/5000  |
| Rank: | 13/5000  |
| Rank: | 46/5000  |

# Drug Repurposing for Emerging Pathogens

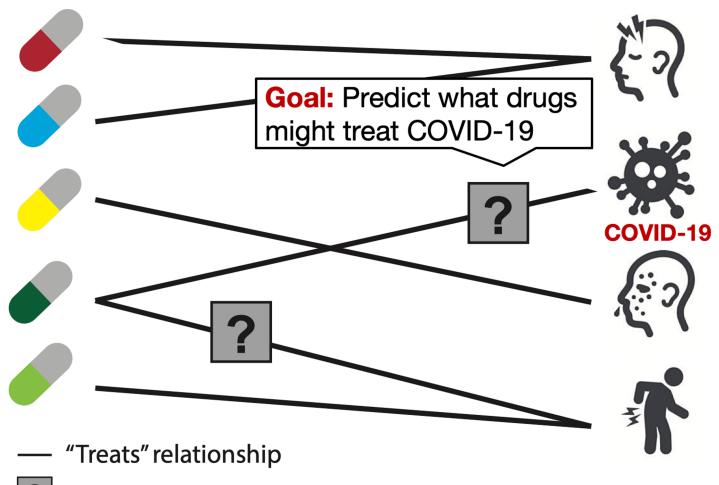
#### Paper:

Deisy Morselli Gysi, Ítalo Do Valle, Marinka Zitnik, Asher Ameli, Xiao Gan, et al. Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19, *arXiv:2004.07229* 

# **Emerging Pathogens**

Drugs

Diseases



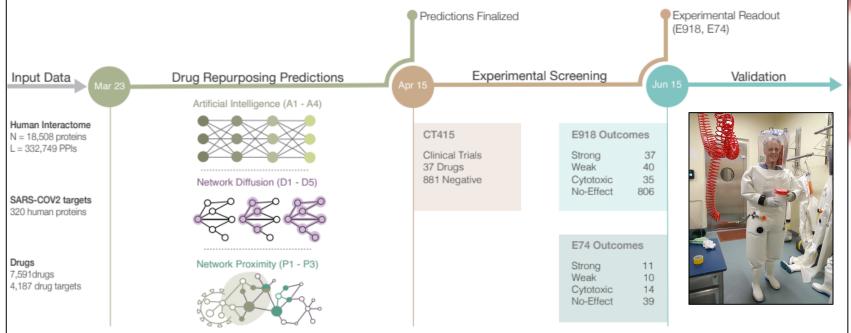


ML for Drug Development - https://zitniklab.hms.harvard.edu/drugml - Tutorial at IJCAI, Jan 6, 2021

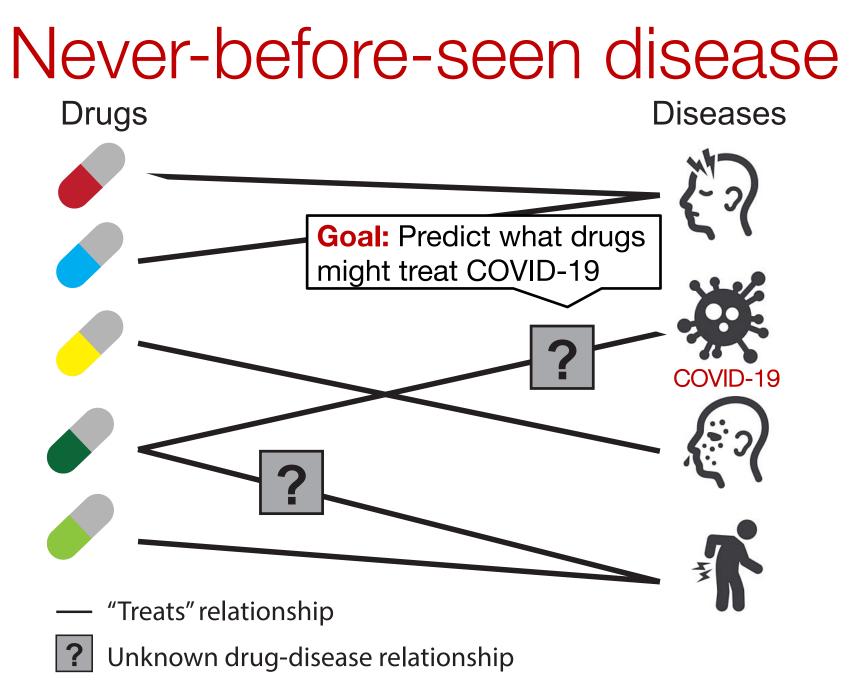
# Never-Before-Seen Disease

The traditional approach of iterative development, experimental testing, clinical validation, and approval of new drugs are not feasible

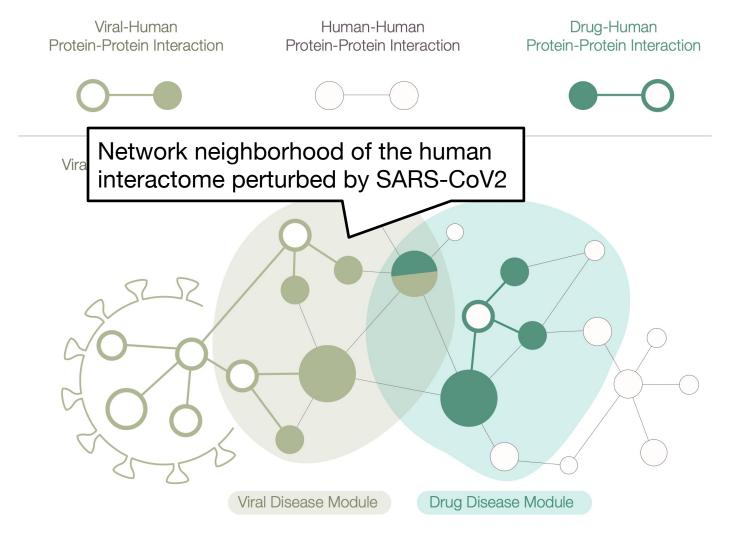
A more realistic strategy relies on drug repurposing, requiring us to identify clinically approved drugs that have a therapeutic effect in COVID-19 patients



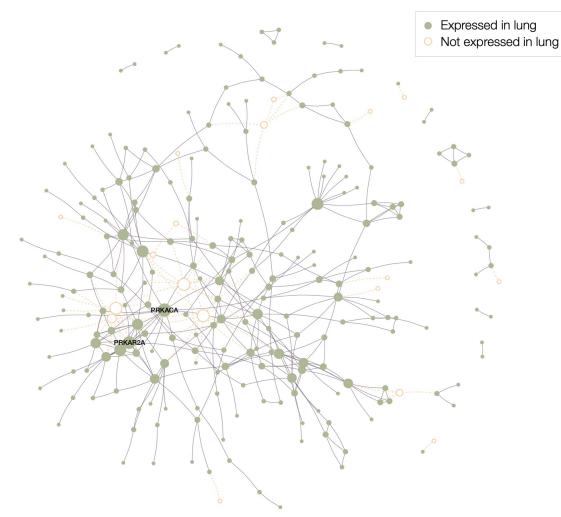
Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229



#### How to represent COVID-19? Map SARS-CoV2 targets to the human interactome



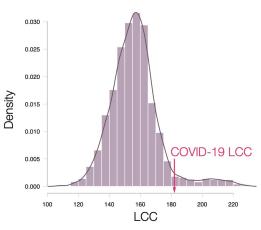
# COVID-19 Subgraph



Gordon et al., Nature 2020 expressed 26 of the 29 SARS-CoV2 proteins and used AP-MS to identify 332 human proteins to which viral proteins bind

**Full Interactome** 0.030 0.025 0.020 Density 0.015 0.010 COVID-19 LCC 0.005 0.000 140 160 180 200 220 240 LCC

Lung Interactome



# Key Insight: Subgraphs

**Disease:** Subgraph of rich protein network defined on disease proteins

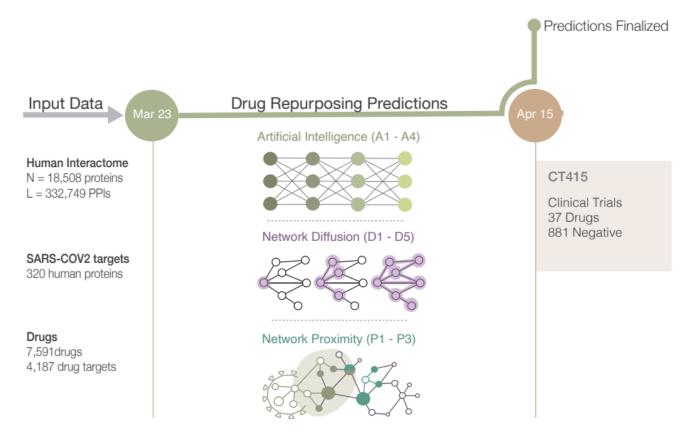
**Drug:** Subgraph of rich protein network defined on drug's target proteins

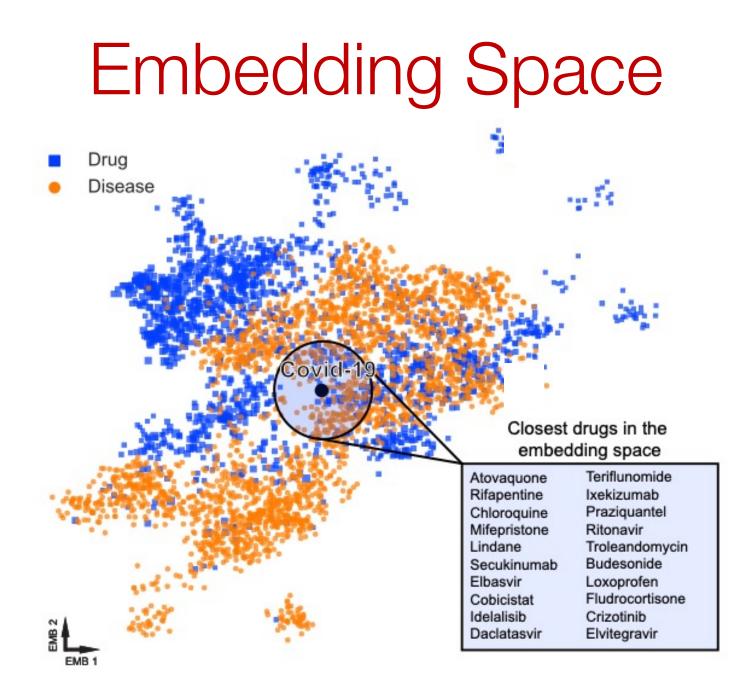
A drug likely treats a disease if it is **close** to the disease in **pharmacological space** [Paolini et al., Nature Biotech.'06; Menche et al., Science'15]

# Idea: Use the paradigm of embeddings to operationalize the concept of closeness in pharmacological space

# **Computational Setup**

- Proxy for ground-truth information:
  - Monitor drugs under clinical trials
  - Capture the medical community's assessment of drugs





# Results: COVID-19 Repurposing

Individual ROC



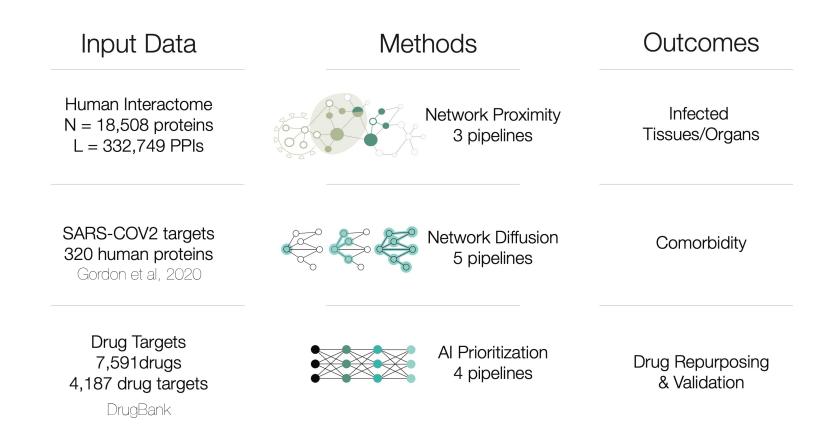
We test each pipeline's ability to recover drugs currently in clinical trials for COVID-19

The best individual ROC curves are obtained by the GNN methods

The second-best performance is provided by the proximity P3. Close behind is P1 with AUC = 0.68 and AUC = 0.58

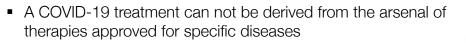
Diffusion methods offer ROC between 0.55-0.56

### Final Prediction Model – Part #1



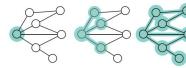
### Final Prediction Model – Part #2

#### Methods

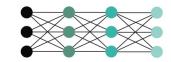


- Repurposing strategies focus on drugs previously approved for other pathogens, or on drugs that target the human proteins to which viral proteins bind.
- Most approved drugs do not target directly disease proteins but bind to proteins in their network vicinity
- [Yildirim, Nature Biotech. 2007]
- Identify drug candidates that have the potential to perturb the network vicinity of the COVID-19 disease module.
- Implement 3 Network Repurposing Methods.





Network Diffusion 5 pipelines



Al Prioritization 4 pipelines

### Final Prediction Model – Part #3

Rank Aggregation Algorithm: Maximize the number of pairwise agreements between the final ranking and each input ranking.

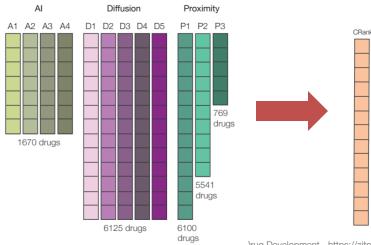
The combined performance of the AI methods is 0.87, the same as A3.

Improvement for proximity pipelines:  $0.70 \rightarrow 0.72$ .

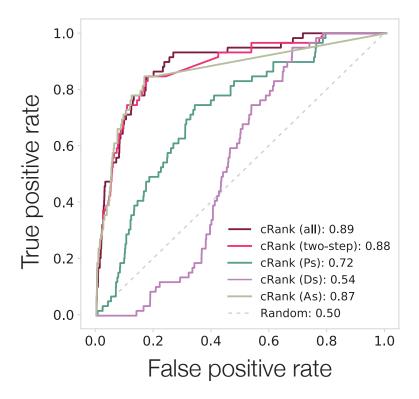
Combined diffusion pipelines have lower performance (0.54 vs 0.56, for D1, D2, and D4).

Combining all 12 pipelines, gives AUROC=0.89, the highest of any individual or combination-based pipelines,

Individual pipelines offer complementary information harnessed by the combined ranking.



#### Combined ROC



### Predicted Drugo Candidates

86 drugs selected from the top 10% of the rank list.

Respiratory drugs (e.g., theophylline, montelukast).

Cardiovascular systems (e.g., verapamil, atorvastatin).

Antibiotics used to treat viral (e.g., ribavirin, lopinavir), parasitic (e.g., hydroxychloroquine, ivermectin, praziquantel), bacterial (e.g., rifaximin, sulfanilamide), mycotic (e.g., fluconazole), and mycobacterial (e.g., isoniazid) infections.

Immunomodulating/anti-inflammatory drugs (e.g., interferon- $\beta$ , auranofin, montelukast, colchicine)

Anti-proteasomal drugs (e.g., bortezomib, carfilzomib)

Less obvious choices: aminoglutethimide, melatonin, levothyroxine, calcitriol, selegiline, deferoxamine, mitoxantrone, metformin, nintedanib, cinacalcet, and sildenafil.

|      | Drug               | C-rank |     |
|------|--------------------|--------|-----|
| 20   | Ritonavir          | 1      |     |
|      | Isoniazid          | 2      |     |
|      | Troleandomycin     | 3      |     |
|      | Cilostazol         | 4      |     |
| (76) | Chloroquine        | 5      |     |
|      | Rifabutin          | 6      |     |
|      | Flutamide          | 7      | 1   |
| 2    | Dexamethasone      | 8      |     |
|      | Rifaximin          | 9      |     |
|      | Azelastine         | 10     | 1   |
|      | Folic Acid         | 16     | (17 |
|      | Rabeprazole        | 27     |     |
|      | Methotrexate       | 32     |     |
|      | Digoxin            | 33     | 1   |
|      | Theophylline       | 34     |     |
|      | Fluconazole        | 41     | 1   |
|      | Aminoglutethimide  | 42     |     |
| 67   | Hydroxychloroquine | 9 44   | 1   |
| 0    | Methimazole        | 47     |     |
| 1    | Ribavirin          | 49     | 1   |
| 1    | Omeprazole         | 50     |     |
|      | Bortezomib         | 53     | 1   |
|      | Leflunomide        | 54     |     |
|      | Dimethylfumarate   | 55     | 1   |
| 4    | Colchicine         | 57     |     |
|      |                    |        |     |

# of Clinical trials from ClinicalTrials.gov

| < | Drug                                | C-rank |
|---|-------------------------------------|--------|
|   | Mesalazine                          | 69     |
|   | Pentamidine                         | 92     |
|   | Verapamil                           | 98     |
|   | Melatonin                           | 109    |
|   | Griseofulvin                        | 112    |
|   | Auranofin                           | 118    |
|   | 1 Atovaquone                        | 124    |
|   | Montelukast                         | 131    |
|   | Romidepsin                          | 138    |
|   | 1 Cobicistat                        | 141    |
|   | (17) Lopinavir                      | 146    |
|   | Pomalidomide                        | 155    |
|   | Sulfinpyrazone                      | 157    |
|   | 1 Levamisole                        | 161    |
|   | Calcitriol                          | 164    |
|   | <ol> <li>Interferon-β-1a</li> </ol> | 173    |
|   | Praziquantel                        | 176    |
|   | 1 Ascorbic acid                     | 195    |
|   | Fluvastatin                         | 199    |
|   | 1 Interferon-β-1b                   | 203    |
|   | Selegiline                          | 206    |
|   | 1 Deferoxamine                      | 227    |
|   | Ivermectin                          | 235    |
|   | 1 Atorvastatin                      | 243    |
|   | Mitoxantrone                        | 250    |
|   | Glyburide                           | 259    |
|   | 2 Thalidomide                       | 262    |

Joseph Loscalzo

Drug

Sulfanilamide



265

|     | Gallalinalinae      | 200 |
|-----|---------------------|-----|
|     | Hydralazine         | 269 |
|     | Gemfibrozil         | 281 |
| (4) | Ruxolitinib         | 284 |
|     | Propranolol         | 297 |
|     | Carbamazepine       | 301 |
|     | Doxorubicin         | 309 |
|     | Levothyroxine       | 329 |
|     | Dactinomycin        | 335 |
|     | Tenofivir           | 338 |
|     | Tadalafil           | 339 |
|     | Doxazosin           | 367 |
|     | Rosiglitazone       | 397 |
|     | Aminolevulinic acid | 398 |
|     | Nitroglycerin       | 418 |
|     | Metformin           | 457 |
| 1   | Nintedanib          | 466 |
|     | Allopurinol         | 471 |
|     | Ponatinib           | 491 |
| 1   | Sildenafil          | 493 |
|     | Dapagliflozin       | 504 |
|     | Nitroprusside       | 515 |
|     | Cinacalcet          | 553 |
|     | Mexiletine          | 559 |
|     | Sitagliptin         | 706 |
|     | Carfilzomib         | 765 |
| 1   | Azithromycin        | 786 |
| 1   |                     |     |

63

67

Quercetin

Mebendazole

### Experimental Validation of Predictions



National Emerging Infectious Diseases Laboratories (NEIDL)

| CRank | Drug Name      |
|-------|----------------|
| 1     | Ritonavir      |
| 2     | Isoniazid      |
| 3     | Troleandomycin |
| 4     | Cilostazol     |
| 5     | Chloroquine    |
| 6     | Rifabutin      |
| 7     | Flutamide      |
| 8     | Dexamethasone  |
| 9     | Rifaximin      |
| 10    | Azelastine     |
| 11    | Crizotinib     |

| 17 | Celecoxib         |
|----|-------------------|
| 18 | Betamethasone     |
| 19 | Prednisolone      |
| 20 | Mifepristone      |
| 21 | Budesonide        |
| 22 | Prednisone        |
| 23 | Oxiconazole       |
| 24 | Megestrol acetate |
| 25 | Idelalisib        |
| 26 | Econazole         |
| 07 | Dehanrazala       |

#### Ranked lists of drugs

#### New algorithms:

Prioritizing Network Communities, *Nature Communications* 2018 Subgraph Neural Networks, *NeurIPS* 2020 Graph Meta Learning via Local Subgraphs, *NeurIPS* 2020

**Results:** 918 compounds screened for their efficacy against SARS-CoV-2 in VeroE6 cells:

- 37 had a strong effect being active over a broad range of concentrations
- 40 had a weak effect on the virus
- An order of magnitude higher hit rate among top 100 drugs than prior work

# Results: Network Drugs

- 76/77 drugs that successfully reduced viral infection do not bind proteins targeted by SARS-CoV-2:
  - These drugs rely on network-based actions that cannot be identified by docking-based strategies

| Rank | Drug Name             | CRank | Drug Name                 | CRank  | Drug Name            | Direct targe   |
|------|-----------------------|-------|---------------------------|--------|----------------------|----------------|
| 5    | Chloroquine           | 423   | Pitavastatin              | 742    | Mianserin            | drugs (D1-2    |
| 6    | Rifabutin             | 431   | Tenoxicam                 | 755    | Clofazimine          | urugs (DT-     |
| 9    | Rifaximin             | 438   | Quinidine                 | 767    | Chlorpromazine       |                |
| 10   | Azelastine            | 456   | Sertraline                | 772    | Imipramine           | D1             |
| 16   | Folic acid            | 460   | Ingenol mebutate          | 830    | Promazine            |                |
| 32   | Methotrexate          | 463   | Norelgestromin            | 900    | L-Alanine            |                |
| 33   | Digoxin               | 493   | Sildenafil                | 917    | Moxifloxacin         |                |
| 44   | Hydroxychloroquine    | 499   | Eliglustat                | 933    | Tasimelteon          | /              |
| 50   | Omeprazole            | 518   | Ulipristal                | 995    | Vandetanib           |                |
| 13   | Clobetasol propionate | 553   | Cinacalcet                | 1000   | Azilsartan medoxomil |                |
| 18   | Auranofin             | 556   | Perphenazine              | 1020   | Frovatriptan         |                |
| 120  | Vinblastine           | 558   | Idarubicin                | 1034   | Zolmitriptan         |                |
| 99   | Fluvastatin           | 564   | Perhexiline               | 1035   | Procarbazine         |                |
| 210  | Clomifene             | 569   | Amiodarone                | 1093   | Asenapine            | 4              |
| 233  | Ibuprofen             | 577   | Duloxetine                | 1107   | Dyclonine            |                |
| 235  | Ivermectin            | 585   | Toremifene                | 1140.5 | Clemastine           |                |
| 243  | Atorvastatin          | 586   | Afatinib                  | 1194   | Prochlorperazine     |                |
| 253  | Pralatrexate          | 601   | Amitriptyline             | 1222   | Miglustat            |                |
| 263  | Cobimetinib           | 626   | Meclizine                 | 1224   | Prenylamine          | 5A             |
| 269  | Hydralazine           | 635   | Valsartan                 | 1276   | Dalfampridine        | ~ >            |
| 297  | Propranolol           | 651   | Eletriptan                | 1314   | Cinchocaine          | $\bigcirc$     |
| 317  | Osimertinib           | 673   | Sotalol                   | 1355   | Methotrimeprazine    |                |
| 348  | Vincristine           | 678   | Thioridazine              | 1396   | Methylthioninium     |                |
| 367  | Doxazosin             | 695   | Chlorcyclizine            | 1403   | Metixene             |                |
| 397  | Rosiglitazone         | 707   | Omacetaxine mepesuccinate | 1443   | Trifluoperazine      | SARS-Co        |
| 398  | Aminolevulinic acid   | 721   | Candesartan               |        | -                    | Viral Interact |

#### 58/77 drugs with positive experimental outcome are among top 750 ranked drugs

Strong

# Outline

- Overview and introduction
- Part 1: Virtual drug screening and drug repurposing
  - Part 2: Adverse drug effects, drug-drug interactions
  - Part 3: Clinical trial site identification, patient recruitment
  - Part 4: Molecule optimization, molecular graph generation, multimodal graph-to-graph translation
  - Part 5: Molecular property prediction and transformers
  - Demos, resources, wrap-up & future directions