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Logistics
§ IJCAI (https://ijcai20.org):

§ Jan 6, 7-10:15pm Eastern Standard Time
§ Jan 7, 12-3:15pm UTC
§ Jan 7, 9am-12pm Japanese Standard Time

§ Location: Red wing, North 3
§ Q&A: Use Zoom features

Tutorial website with materials, demos and pointers 
to code and data resources:

https://zitniklab.hms.harvard.edu/drugml
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Step 1: Design and 
Discovery

Step 2: Preclinical 
Research

Step 3: Clinical 
Research

Step 4: FDA 
Review

Step 5: Post-Market and
Safety Monitoring
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Opportunities for AI in Drug 
Development

Step 1: Design and 
Discovery

Step 2: Preclinical 
Research

Step 3: Clinical 
Research

Step 4: FDA 
Review

Step 5: Post-Market and
Safety Monitoring

Support decision-making for a new 
drug in the laboratory

Answer basic questions about safety 
and animal testing

Predict if drug is safe & effective to test 
on people, find new uses for drugs

Automatic document review to make a 
decision to approve the drug or not

Detect adverse and safety issues in 
real time using electronic health data 
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Asthma

Alzheimer’s

Heart
disease

Brain
disease

Asthma

Alzheimer’s

Heart
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Brain
disease

Why is it so challenging 
to realize this vision?

Finding promising therapeutic interventions for diseases depends on 
complex interactions, e.g., drug-target, protein-protein, drug-drug, drug-

disease, disease-protein dependencies
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Why is it so challenging 
to realize this vision?

Health records
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Need to integrate heterogeneous, 
confounded data that span from molecules to 

society
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growth phenotype (Fig. 1b). Previously, we saw that hierarchical 
groups of genes in an ontology could be used to formulate input 
features for such phenotypic predictions12,13. However, these fea-
tures were provided to standard black-box machine-learning mod-
els, which could not be interpreted biologically. Here, we embed 
the structure of the deep neural network directly in the biological 
hierarchy, enabling transparent biological interpretation.

RESULTS
DCell design
In DCell, the functional state of each subsystem is represented 
by a bank of neurons (Fig. 1c). Connectivity of these neurons 
is set to mirror the biological hierarchy, so that they take inputs 
only from neurons of child subsystems and send outputs only 
to neurons of parent subsystems, with weights determined dur-
ing training. The use of multiple neurons (ranging from 20 to 
1,075 per system; see Online Methods) acknowledges that cel-
lular components are often multifunctional, with states that are 
too complex to be captured by a single neuron14. The input layer 

of the hierarchy comprises the genes, whereas the output layer, 
or root, is a single neuron representing cell phenotype. By this 
design, the VNN embedded in GO includes 97,181 neurons; the 
corresponding model for CliXO includes 22,167 neurons. The 
depth of both networks is 12 layers, on par with deep neural  
networks in other fields7.

Performance in genotype–phenotype translation
Given this architecture, we taught DCell to predict phenotypes 
related to cellular fitness, a model genotype-to-phenotype trans-
lation task (see Online Methods). Extensive training was made 
possible by an existing compendium of yeast growth phenotypes 
measured for single- and double-gene-deletion genotypes, com-
prising several million genotype–phenotype training exam-
ples15,16. We considered two related phenotypes: (i) capacity for 
growth measured by colony size relative to wild-type cells, and 
(ii) for double gene deletions, genetic interaction score meas-
ured as the difference in colony size from that expected from the  
corresponding single-gene deletions. Predicting genetic interaction  
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Figure 1 | Modeling system structure and function with visible learning. (a) A conventional neural network translates input to output as a black box 
without knowledge of system structure. (b) In a visible neural network, input–output translation is based on prior knowledge. In DCell, gene-disruption 
genotypes (top) are translated to cell-growth predictions (bottom) through a hierarchy of cell subsystems (middle). (c) A neural network is embedded in 
the prior structure using multiple neurons per subsystem. (d) Screen capture of DCell online service.
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growth phenotype (Fig. 1b). Previously, we saw that hierarchical 
groups of genes in an ontology could be used to formulate input 
features for such phenotypic predictions12,13. However, these fea-
tures were provided to standard black-box machine-learning mod-
els, which could not be interpreted biologically. Here, we embed 
the structure of the deep neural network directly in the biological 
hierarchy, enabling transparent biological interpretation.

RESULTS
DCell design
In DCell, the functional state of each subsystem is represented 
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only from neurons of child subsystems and send outputs only 
to neurons of parent subsystems, with weights determined dur-
ing training. The use of multiple neurons (ranging from 20 to 
1,075 per system; see Online Methods) acknowledges that cel-
lular components are often multifunctional, with states that are 
too complex to be captured by a single neuron14. The input layer 

of the hierarchy comprises the genes, whereas the output layer, 
or root, is a single neuron representing cell phenotype. By this 
design, the VNN embedded in GO includes 97,181 neurons; the 
corresponding model for CliXO includes 22,167 neurons. The 
depth of both networks is 12 layers, on par with deep neural  
networks in other fields7.

Performance in genotype–phenotype translation
Given this architecture, we taught DCell to predict phenotypes 
related to cellular fitness, a model genotype-to-phenotype trans-
lation task (see Online Methods). Extensive training was made 
possible by an existing compendium of yeast growth phenotypes 
measured for single- and double-gene-deletion genotypes, com-
prising several million genotype–phenotype training exam-
ples15,16. We considered two related phenotypes: (i) capacity for 
growth measured by colony size relative to wild-type cells, and 
(ii) for double gene deletions, genetic interaction score meas-
ured as the difference in colony size from that expected from the  
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Figure 1 | Modeling system structure and function with visible learning. (a) A conventional neural network translates input to output as a black box 
without knowledge of system structure. (b) In a visible neural network, input–output translation is based on prior knowledge. In DCell, gene-disruption 
genotypes (top) are translated to cell-growth predictions (bottom) through a hierarchy of cell subsystems (middle). (c) A neural network is embedded in 
the prior structure using multiple neurons per subsystem. (d) Screen capture of DCell online service.

Data Data

Prediction Prediction

Need to translate predictions into 
actionable hypotheses

Multi-scale: molecules, individuals, populations
Heterogeneous: experimental readouts, curated, self-reported
Confounded: data from different technologies, and measurement platforms

One large flat 
dataset
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Outline
Overview and introduction

Part 1: Virtual drug screening and drug repurposing 

Part 2: Adverse drug effects, drug-drug interactions

Part 3: Clinical trial site identification, patient recruitment

Part 4: Molecule optimization, molecular graph generation, 
multimodal graph-to-graph translation

Part 5: Molecular property prediction and transformers

Demos, resources, wrap-up & future directions
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Let’s begin!
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