Artificial Intelligence for Medicine and Science


Open positions

AI for Medicine | Individualized Diagnosis and Treatment

The state of a person is described with increasing precision incorporating modalities like genetic code, cellular atlases, molecular datasets, and therapeutics—the challenge is how to reason over these data to develop powerful disease diagnostics and empower new kinds of therapies. Our research creates new avenues for fusing knowledge and patient data to give the right patient the right treatment at the right time and have medicinal effects that are consistent from person to person and with results in the laboratory.

AI for Science | Scientific Discovery and Therapeutic Science

For centuries, the method of discovery—the fundamental practice of science that scientists use to explain the natural world systematically and logically—has remained largely the same. We are using AI to change that. The natural world is interconnected, from the various facets of genome regulation to the molecular and organismal levels. These interactions across different levels yield a bewildering degree of complexity. Our research seeks to disentangle this complexity, developing AI models that advance drug design and help develop new kinds of therapies.

Latest News

Jan 2025:   ProCyon AI Highlighted by Kempner

Thanks to Kempner Institute for highlighting our latest research, ProCyon, a multimodal foundation model for protein phenotypes.

Jan 2025:   AI Design of Proteins for Therapeutics

Dec 2024:   Unified Clinical Vocabulary Embeddings

New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.

Dec 2024:   SPECTRA in Nature Machine Intelligence

Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.

Nov 2024:   Ayush Noori Selected as a Rhodes Scholar

Congratulations to Ayush Noori on being named a Rhodes Scholar! Such an incredible achievement!

Nov 2024:   PocketGen in Nature Machine Intelligence

Oct 2024:   Activity Cliffs in Molecular Properties

Oct 2024:   Knowledge Graph Agent for Medical Reasoning

Sep 2024:   Three Papers Accepted to NeurIPS

Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.

Sep 2024:   TxGNN Published in Nature Medicine

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Aug 2024:   How Proteins Behave in Context

Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.

Jul 2024:   PINNACLE in Nature Methods

PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.

Jul 2024:   Digital Twins as Global Health and Disease Models of Individuals

Paper on digitial twins outlining strategies to leverage molecular and computational techniques to construct dynamic digital twins on the scale of populations to individuals.

Jul 2024:   Three Papers: TrialBench, 3D Structure Design, LLM Editing

Jun 2024:   TDC-2: Multimodal Foundation for Therapeutics

The Commons 2.0 (TDC-2) is an overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new tasks and benchmarks. Our paper.

May 2024:   Broad MIA: Protein Language Models

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics